Laser Journal, Volume. 45, Issue 8, 92(2024)
Research on workpiece anomaly detection algorithm based on inverse knowledge distillation
[1] [1] Pang G, Shen C, Cao L, et al. Deep learning for anomaly detection: A review[J]. ACM computing surveys(CSUR), 2021, 54(2): 1-38.
[2] [2] Berthelot D, Raffel C, Roy A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[J]. arXiv preprint arXiv: 1807.07543, 2018.
[3] [3] Akcay S, Atapour-Abarghouei A, Breckon T P. Ganomaly: Semi-supervised anomaly detection via adversarial training[C]//Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected Papers, Part III 14. Springer International Publishing, 2019: 622-637.
[4] [4] Liu W, Chang H, Ma B, et al. Diversity-measurable anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12147-12156.
[5] [5] Tsai C C, Wu T H, Lai S H. Multi-scale patch-based representation learning for image anomaly detection and segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 3992-4000.
[6] [6] Sohn K, Li C L, Yoon J, et al. Learning and evaluating representations for deep one-class classification[J]. arXiv preprint arXiv: 2011.02578, 2020.
[7] [7] Sohn K, Li C L, Yoon J, et al. Self-Supervised Learning for Anomaly Detection and Localization: U. S. Patent Application 17/454, 605[P]. 2022-5-19.
[8] [8] Xie H, Xiao Y. Multiresolution Knowledge Distillation and Multi-level Fusion for Defect Detection[C]//International Conference on Green, Pervasive, and Cloud Computing. Cham: Springer International Publishing, 2022: 178-191.
[9] [9] Zhiyuan F, Ying C, Linbo X. Unsupervised anomaly detection via knowledge distillation with non-directly-coupled student block fusion[J]. Machine Vision and Applications, 2023, 34(6): 1011-1018.
[10] [10] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[11] [11] Yan H, Liu Z, Chen J, et al. Memory-augmented skipconnected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion[J]. ISA transactions, 2023, 133: 53-65.
[13] [13] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[14] [14] Bergmann P, Batzner K, Fauser M, et al. The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection[J]. International Journal of Computer Vision, 2021, 129(4): 1038-1059.
[15] [15] Zou Y, Jeong J, Pemula L, et al. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 392-408.
Get Citation
Copy Citation Text
ZHANG Xiaoyong, WANG Liming, LI Xuan, HAN Xingcheng. Research on workpiece anomaly detection algorithm based on inverse knowledge distillation[J]. Laser Journal, 2024, 45(8): 92
Category:
Received: Jan. 5, 2024
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: Liming WANG (wlm@nuc.edu.cn)