Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 7, 730(2024)
Attention mechanism based 3D point cloud target recognition
[4] [4] CHARLES R Q, SU Hao,KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,USA:IEEE, 2017:77-85. doi:10.1109/CVPR.2017.16.
[5] [5] QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York,USA:Curran Associates Inc., 2017:5105-5114. doi:10.5555/3295222.3295263.
[6] [6] ZHAO Hengshuang,JIANG Li,FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 5560-5568. doi:10.1109/CVPR.2019.00571.
[7] [7] LI Jiaxin,CHEN B M,LEE G H. SO-Net:Self-Organizing Network for point cloud analysis[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE, 2018:9397-9406. doi:10.1109/CVPR.2018.00979.
[8] [8] LI Yangyan,BU Rui,SUN Mingchao,et al. PointCNN:convolution on X-transformed points[C]// Advances in Neural Information Processing Systems 31. Montreal,Canada:NeurIPS, 2018:450.
[9] [9] WU Wenxuan, QI Zhongang, LI Fuxin. PointConv: deep convolutional networks on 3D point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,CA,USA:IEEE, 2019: 9613-9622. doi: 10.1109/CVPR.2019.00985.
[10] [10] KOMARICHEV A,ZHONG Zichun,HUA Jing. A-CNN:annularly convolutional neural networks on point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 7413-7422. doi:10.1109/CVPR.2019.00760.
[11] [11] XU Yifan,FAN Tianqi,XU Mingye, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[M]// Ferrari V,Hebert M,Sminchisescu C,et al. Computer Vision-ECCV 2018. Cham,Switzerland:Springer Cham, 2018:90-105. doi:10.1007/978-3-030-01237-3_6.
[12] [12] SCARSELLI F,GORI M,TSOI A C,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009,20(1):61-80. doi:10.1109/TNN.2008.2005605.
[13] [13] WANG Yue,SUN Yongbin,LIU Ziwei,et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics,2019,38(5):1-12. doi:10.1145/3326362.
[14] [14] WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE, 2015: 1912-1920. doi: 10.1109/CVPR. 2015.7298801.
[15] [15] UY M A,PHAM Q H,HUA B S,et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea(South): IEEE, 2019:1588-1597. doi:10.1109/ICCV.2019.00167.
[16] [16] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE, 2018:7132-7141. doi:10.1109/CVPR.2018.00745.
[17] [17] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,NV,USA:IEEE, 2016:770-778. doi:10.1109/CVPR.2016.90.
[18] [18] XIAO Jianxiong,HAYS J,EHINGER K A,et al. SUN database:large-scale scene recognition from abbey to zoo[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco,USA:IEEE, 2010: 3485-3492. doi:10.1109/CVPR.2010.5539970.
[19] [19] KLOKOV R,LEMPITSKY V. Escape from cells:deep Kd-networks for the recognition of 3D point cloud models[C]// 2017 IEEE International Conference on Computer Vision(ICCV). Venice,Italy:IEEE, 2017:863-872. doi:10.1109/ICCV.2017.99.
[20] [20] LE T,DUAN Ye. PointGrid: a deep network for 3D shape understanding[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE, 2018:9204-9214. doi:10.1109/CVPR.2018.00959.
[21] [21] ATZMON M, MARON H, LIPMAN Y. Point convolutional neural networks by extension operators[J]. ACM Transactions on Graphics, 2018,37(4):1-12. doi:10.1145/3197517.3201301.
[22] [22] THOMAS H,QI C R,DESCHAUD J E,et al. KPConv:flexible and deformable convolution for point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea(South): IEEE, 2019: 6410-6419. doi: 10.1109/ICCV. 2019.00651.
[23] [23] LIU Yongcheng,FAN Bin,XIANG Shiming,et al. Relation-shape convolutional neural network for point cloud analysis[C]// 2019IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,CA,USA:IEEE, 2019:8887-8896. doi:10.1109/CVPR.2019.00910.
[24] [24] YAN Xu,ZHENG Chaoda,LI Zhen,et al. PointASNL:robust point clouds processing using nonlocal neural networks with adaptive sampling[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle,WA,USA:IEEE, 2020:5588-5597. doi:10.1109/CVPR42600.2020.00563.
[25] [25] QIU Shi, ANWAR S, BARNES N. Dense-resolution network for point cloud classification and segmentation[C]// 2021 IEEE Winter Conference on Applications of Computer Vision(WACV). Hawaii, USA: IEEE, 2021: 3812-3821. doi: 10.1109/WACV 48630.2021.00386.
[26] [26] QIU Shi,ANWAR S, BARNES N. Geometric back-projection network for point cloud classification[J]. IEEE Transactions on Multimedia, 2022(24):1943-1955. doi:10.1109/TMM.2021.3074240.
Get Citation
Copy Citation Text
WANG Yang, XIAO Shunping. Attention mechanism based 3D point cloud target recognition[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(7): 730
Category:
Received: May. 6, 2022
Accepted: --
Published Online: Aug. 22, 2024
The Author Email: Yang WANG (wangyangs4@nudt.edu.cn)