Opto-Electronic Advances, Volume. 6, Issue 7, 220172(2023)
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors
[1] J Kim, M Lee, HJ Shim, R Ghaffari, HR Cho et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 5, 5747(2014).
[2] M Naqi, S Lee, HJ Kwon, MG Lee, M Kim et al. A fully integrated flexible heterogeneous temperature and humidity sensor‐based occupancy detection device for smart office applications. Adv Mater Technol, 4, 1900619(2019).
[3] J Q Zhang, Y Gao, C Li et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing. Opto-Electron Eng, 49, 210316(2022).
[4] YK Shen, SJ Hou, DD Hao, X Zhang, Y Lu et al. Food-based highly sensitive capacitive humidity sensors by inkjet printing for human body monitoring. ACS Appl Electron Mater, 3, 4081-4090(2021).
[5] HY Guo, CY Lan, ZF Zhou, PH Sun, DP Wei et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale, 9, 6246-6253(2017).
[6] LY Lan, XH Le, HY Dong, J Xie, YB Ying et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron, 165, 112360(2020).
[7] YY Lu, KC Xu, LS Zhang, M Deguchi, H Shishido et al. Multimodal plant healthcare flexible sensor system. ACS Nano, 14, 10966-10975(2020).
[8] YY Lu, G Yang, YJ Shen, HY Yang, KC Xu. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nanomicro Lett, 14, 150(2022).
[9] S Kano, K Kim, M Fujii. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens, 2, 828-833(2017).
[10] XY Peng, J Chu, A Aldalbahi, M Rivera, LD Wang et al. A flexible humidity sensor based on KC–MWCNTs composites. Appl Surf Sci, 387, 149-154(2016).
[11] L Gu, D Zhou, JC Cao. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors, 16, 833(2016).
[12] JH Wu, CS Yin, J Zhou, HL Li, Y Liu et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots. ACS Appl Mater Interfaces, 12, 39817-39825(2020).
[13] MA Najeeb, Z Ahmad, RA Shakoor. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv Mater Interfaces, 5, 1800969(2018).
[14] J Kim, JH Cho, HM Lee, SM Hong. Capacitive humidity sensor based on carbon black/polyimide composites. Sensors, 21, 1974(2021).
[15] ZH Duan, YD Jiang, HL Tai. Recent advances in humidity sensors for human body related humidity detection. J Mater Chem C, 9, 14963-14980(2021).
[16] CC Zhu, LQ Tao, Y Wang, K Zheng, JB Yu et al. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem, 325, 128790(2020).
[17] X Guan, ZN Hou, K Wu, HR Zhao, S Liu et al. Flexible humidity sensor based on modified cellulose paper. Sens Actuators B Chem, 339, 129879(2021).
[18] S Sriphan, T Charoonsuk, S Khaisaat, O Sawanakarn, U Pharino et al. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology, 32, 155502(2021).
[19] M Velumani, SR Meher, ZC Alex. Composite metal oxide thin film based impedometric humidity sensors. Sens Actuators B Chem, 301, 127084(2019).
[20] HY Tang, LN Sacco, S Vollebregt, HY Ye, XJ Fan et al. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives. J Mater Chem A, 8, 24943-24976(2020).
[21] J Ren, BJ Guo, Y Feng, K Yu. Few-layer MoS2 dendrites as a highly active humidity sensor. Phys E:Low-Dimens Syst Nanostructures, 116, 113782(2020).
[22] M Eryürek, Z Tasdemir, Y Karadag, S Anand, N Kilinc et al. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sens Actuators B Chem, 242, 1115-1120(2017).
[23] V Sprincean, M Caraman, T Spataru, F Fernandez, F Paladi. Influence of the air humidity on the electrical conductivity of the β-Ga2O3-GaS structure: air humidity sensor. Appl Phys A, 128, 303(2022).
[24] D Wang, YL Lou, R Wang, PP Wang, XJ Zheng et al. Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder. Ceram Int, 41, 14790-14797(2015).
[25] TY Tsai, SJ Chang, WY Weng, S Liu, CL Hsu et al. β−Ga2O3 nanowires-based humidity sensors prepared on GaN/sapphire substrate. IEEE Sens J, 13, 4891-4896(2013).
[26] YM Juan, SJ Chang, HT Hsueh, SH Wang, WY Weng et al. Effects of humidity and ultraviolet characteristics on β-Ga2O3 nanowire sensor. RSC Adv, 5, 84776-84781(2015).
[27] G Domènech-Gil, I Peiró, E López-Aymerich, M Moreno, P Pellegrino et al. Room temperature humidity sensor based on single β-Ga2O3 nanowires. Proceedings, 2, 958(2018).
[28] R Pilliadugula, N Gopalakrishnan. Room temperature ammonia sensing performances of pure and Sn doped β-Ga2O3. Mater Sci Semicond Process, 135, 106086(2021).
[29] KC Xu, Y Fujita, YY Lu, S Honda, M Shiomi et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater, 33, 2008701(2021).
[30] CJ Zhang, ZK Li, HY Li, Q Yang, H Wang et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces, 14, 38328-38338(2022).
[31] Y Son, J Yeo, H Moon, TW Lim, S Hong et al. Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater, 23, 3176-3181(2011).
[32] A Wolf, A Dostovalov, K Bronnikov, M Skvortsov, S Wabnitz et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv, 5, 210055(2022).
[33] HY Luo, YY Lu, YH Xu, G Yang, SY Cui et al. A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy, 103, 107803(2022).
[34] M Hepp, HZ Wang, K Derr, S Delacroix, S Ronneberger et al. Trained laser-patterned carbon as high-performance mechanical sensors. npj Flex Electron, 6, 3(2022).
[35] RD Rodriguez, S Shchadenko, G Murastov, A Lipovka, M Fatkullin et al. Ultra‐robust flexible electronics by laser‐driven polymer‐nanomaterials integration. Adv Funct Mater, 31, 2008818(2021).
[36] J Shin, B Jeong, J Kim, VB Nam, Y Yoon et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater, 32, 1905527(2020).
[37] CY Zhang, W Zhou, D Geng, C Bai, WD Li et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv, 4, 200061(2021).
[38] J N Liao, D S Zhang, Z G Li. Advance in femtosecond laser fabrication of flexible electronics. Opto-Electron Eng, 49, 210388(2022).
[39] YY Lu, KC Xu, MQ Yang, SY Tang, TY Yang et al. Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz, 6, 260-270(2021).
[40] SL Liu, MC Yuen, EL White, JW Boley, B Deng et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces, 10, 28232-28241(2018).
[41] SL Liu, SN Reed, MJ Higgins, MS Titus, R Kramer-Bottiglio. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Nanoscale, 11, 17615-17629(2019).
[42] PL Mahapatra, S Das, PP Mondal, T Das, D Saha et al. Microporous copper chromite thick film based novel and ultrasensitive capacitive humidity sensor. J Alloys Compd, 859, 157778(2021).
[43] JJ Zhang, L Sun, C Chen, M Liu, W Dong et al. High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles. J Alloys Compd, 695, 520-525(2017).
[44] LY Ma, RH Wu, A Patil, SH Zhu, ZH Meng et al. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater, 29, 1904549(2019).
[45] M Passlack, EF Schubert, WS Hobson, M Hong, N Moriya et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys, 77, 686-693(1995).
[46] T Oshima, K Kaminaga, A Mukai, K Sasaki, T Masui et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. J Appl Phys, 52, 051101(2013).
[47] J He, XT Zheng, ZW Zheng, DG Kong, K Ding et al. Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors. Nano Energy, 92, 106748(2022).
[48] GQ Hu, K Guan, LB Lu, JR Zhang, N Lu et al. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering, 4, 822-830(2018).
[49] YC Yu, S Bai, ST Wang, AM Hu. Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering, 4, 779-786(2018).
[50] SLZ Liu, SY Kim, KE Henry, DS Shah, R Kramer-Bottiglio. Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions. ACS Appl Mater Interfaces, 13, 28729-28736(2021).
[51] XH Liu, DZ Zhang, DY Wang, TT Li, XS Song et al. A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J Mater Chem A, 9, 14524-14533(2021).
[52] WZ Heng, G Yang, WS Kim, KC Xu. Emerging wearable flexible sensors for sweat analysis. Biodes Manuf, 5, 64-84(2022).
Get Citation
Copy Citation Text
Songya Cui, Yuyao Lu, Depeng Kong, Huayu Luo, Liang Peng, Geng Yang, Huayong Yang, Kaichen Xu. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors[J]. Opto-Electronic Advances, 2023, 6(7): 220172
Category: Research Articles
Received: Oct. 27, 2022
Accepted: Feb. 22, 2023
Published Online: Sep. 25, 2023
The Author Email: