Electronics Optics & Control, Volume. 32, Issue 2, 86(2025)

Shadow Removal of Aerial Photography of Pavement Based on Generative Adversarial Network

HAN Jianfeng1,2, JIN Congying1,2, SONG Lili1,2, and ZHAO Yuechen1,2
Author Affiliations
  • 1Inner Mongolia University of Technology, a School of Information Engineering
  • 2b Inner Mongolia Key Laboratory of Perception Technology and Intelligent Systems, Hohhot 010000, China
  • show less
    References(18)

    [1] [1] FAN L L, LI S, LI Y, et al. Pavement cracks coupled with shadows: a new shadow-crack dataset and a shadow-removal-oriented crack detection approach[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(7): 1593-1607.

    [2] [2] CHEN Z H, WANG D H, WANG Y Z, et al. Research and implementation of road damage detection algorithm based on object detection network[C]//2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). Nanjing: IEEE, 2023: 446-450.

    [4] [4] HSIEH S W, YANG C H, LU Y C. Shadow removal through learning-based region matching and mapping function optimization[C]//2022 IEEE International Conference on Multimedia and Expo (ICME). Taipei: IEEE, 2022: 1-6.

    [7] [7] MARTIN A, KAMARUDDIN M N, SANI Z M. Shadow detection and removal of road images with maximum extraction of road marker using multi-colour-space[C]//2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Penang: IEEE, 2022: 1-4.

    [8] [8] KRISHNAN A, JAYADEVAN P, PANICKER J V. Shadow removal from single image using color invariant method[C]//2017 International Conference on Communication and Signal Processing (ICCSP). Chennai: IEEE, 2017: 583-587.

    [9] [9] WANG C X, XU H Q, ZHOU Z Y, et al. Shadow detection and removal for illumination consistency on the road[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 534-544.

    [10] [10] LE H, SAMARAS D. Physics-based shadow image decomposition for shadow removal[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9088-9101.

    [12] [12] WANG J H, LI X, YANG J. Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 1788-1797.

    [15] [15] ZHENG J H, LIU X Y, WANG X D. Single image cloud removal using U-Net and generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6371-6385.

    [16] [16] QU L Q, TIAN J D, HE S F, et al. DeshadowNet: a multi-context embedding deep network for shadow removal[C]//2017 IEEE Conference on Computer Vision and Pattern Recognitian (CVPR). Honolulu: IEEE, 2017: 2308-2316.

    [17] [17] LI H F, ZHANG L P, SHEN H F. An adaptive nonlocal regularized shadow removal method for aerial remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 106-120.

    [18] [18] HU X W, JIANG Y T, FU C W. Mask-ShadowGAN: learning to remove shadows from unpaired data[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 2472-2481.

    [20] [20] DASGUPTA S, DAS A, YOGAMANI S, et al. UnShadowNet: illumination critic guided contrastive learning for shadow removal[J]. IEEE Access, 2023, 11: 87760-87774.

    [21] [21] ZAHNG Y D, LI Z H, SUN Z L, et al. SRODNet: pavement crack detection based on deep convolutional neural network and shadow removal[C]//2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Baishan: IEEE, 2022: 504-508.

    [22] [22] LIU J W, WANG Q, FAN H J, et al. A shadow imaging bilinear model and three-branch residual network for shadow removal[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15857-15871.

    [23] [23] LIU Y H, GUO Q, FU L, et al. Structure-informed shadow removal networks[J]. IEEE Transactions on Image Processing, 2023, 32: 5823-5836.

    [25] [25] LIU Z H, YIN H, MI Y, et al. Shadow removal by a lightness-guided network with training on unpaired data[J]. IEEE Transactions on Image Processing, 2021, 30: 1853-1865.

    [26] [26] JIN Y Y, SHARMA A, TAN R T. DC-ShadowNet: single-image hard and soft shadow removal using unsupervised domain-classifier guided network[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 5007-5016.

    Tools

    Get Citation

    Copy Citation Text

    HAN Jianfeng, JIN Congying, SONG Lili, ZHAO Yuechen. Shadow Removal of Aerial Photography of Pavement Based on Generative Adversarial Network[J]. Electronics Optics & Control, 2025, 32(2): 86

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 29, 2024

    Accepted: Feb. 20, 2025

    Published Online: Feb. 20, 2025

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2025.02.014

    Topics