Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3165(2022)

Development on Fluorescence Sensing Properties of Lanthanide Metal-Organic Frameworks

ZHENG Heqi*... CUI Yuanjing and QIAN Guodong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(129)

    [2] [2] CHEN B, XIANG S, QIAN G. Metal-organic frameworks withfunctional pores for recognition of small molecules[J]. Acc Chem Res, 2010, 43(8): 1115-1124.

    [3] [3] CUI Y, YUE Y, QIAN G, et al. Luminescent functional metal-organic frameworks[J]. Chem Rev, 2012, 112(2):1126-1162.

    [4] [4] ZHENG H Q, LIU C Y, ZENG X Y, et al. MOF-808: a metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing[J]. Inorg Chem,2018, 57(15): 9096-9104.

    [5] [5] WANG P L, XIE L H, JOSEPH E A, et al. Metal-organic frameworks for food safety[J]. Chem Rev, 2019, 119(18):10638-10690.

    [6] [6] ZHENG H Q, ZENG Y N, CHEN J, et al. Zr-based metal-organic frameworks with intrinsic peroxidase-like activity for ultradeep oxidative desulfurization: mechanism of H2O2 decomposition[J].Inorg Chem, 2019, 58(10): 6983-6992.

    [7] [7] SCHOEDEL A, LI M, LI D, et al. Structures of metal-organic frameworks with rod secondary building units[J]. Chem Rev,2016, 116(19): 12466-12535.

    [8] [8] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003,423(6941): 705-714.

    [10] [10] ROCHA J, CARLOS L D, ALMEIDA PAZ F A, et al.Luminescent multifunctional lanthanides-based metal-organic frameworks[J]. Chem Soc Rev, 2011, 40(2): 926-940.

    [11] [11] SARACI F, QUEZADA-NOVOA V, DONNARUMMA P R, et al.Rare-earth metal-organic frameworks: from structure to applications[J]. Chem Soc Rev, 2020, 49(22): 7949-7977.

    [12] [12] CHEN Z, JIANG H, LI M, et al. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal-organic frameworks[J]. Chem Rev, 2020,120(16): 8039-8065.

    [13] [13] ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al. A fine-tuned metal-organic framework for autonomous indoor moisture control[J]. J Am Chem Soc, 2017, 139(31):10715-10722.

    [14] [14] ALEZI D, PEEDIKAKKAL A M P, WESELINSKI L J, et al.Quest for highly connected metal-organic framework platforms:rare-earth polynuclear clusters versatility meets net topology needs[J]. J Am Chem Soc, 2015, 137(16): 5421-5430.

    [15] [15] ANGELI G K, LOUKOPOULOS E, KOUVIDIS K, et al.Continuous breathing rare-earth MOFs based on hexanuclear clusters with gas trapping properties[J]. J Am Chem Soc, 2021,143(27): 10250-10260.

    [16] [16] LUO T Y, LIU C, ELISEEVA S V, et al. Rare earth pcu metal-organic framework platform based on RE4(mu(3)-OH)(4)(COO)(6)(2+) clusters: Rational design, directed synthesis, and deliberate tuning of excitation wavelengths[J]. J Am Chem Soc,2017, 139(27): 9333-9340.

    [17] [17] GUILLERM V, WESELINSKI L J, BELMABKHOUT Y, et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks[J]. Nat Chem, 2014, 6(8): 673-680.

    [18] [18] ZHOU S, SHEKHAH O, JIA J, et al. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons[J]. Nat Energy, 2021, 6(9): 882-891.

    [19] [19] ZHANG T, CHEN H, LIU S, et al. Highly robust {Ln4}-organic frameworks (Ln = Ho, Yb) for excellent catalytic performance on cycloaddition reaction of epoxides with CO2 and knoevenagel condensation[J]. ACS Catal, 2021, 11(24): 14916-14925.

    [20] [20] QUEZADA-NOVOA V, TITI H M, SARJEANT A A, et al.Building a shp: a rare-earth metal-organic framework and its application in a catalytic photooxidation reaction[J]. Chem Mater,2021, 33(11): 4163-4169.

    [21] [21] JIANG Z W, ZOU Y C, ZHAO T T, et al. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness-nd metal-ode-ependent photocatalytic performance[J].Angew Chem Int Ed, 2020, 132(8): 3326-3332.

    [22] [22] WANG Y, ZHAO G, CHI H, et al. Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay[J]. J Am Chem Soc,2021, 143(1): 504-512.

    [23] [23] SAVA GALLIS D F, ROHWER L E S, RODRIGUEZ M A, et al.Multifunctional, tunable metal-organic framework materials platform for bioimaging applications[J]. ACS Appl Mater Interfaces, 2017, 9(27): 22268-22277.

    [24] [24] SKORUPSKII G, TRUMP B A, KASEL T W, et al. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks[J]. Nat Chem, 2020, 12(2): 131-136.

    [25] [25] SKORUPSKII G, DINC? M. Electrical conductivity in a porous,cubic rare-earth catecholate[J]. J Am Chem Soc, 2020, 142(15):6920-6924.

    [26] [26] LAN A, LI K, WU H, et al. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives[J]. Angew Chem Int Ed, 2009, 121(13):2370-2374.

    [27] [27] LUSTIG W P, MUKHERJEE S, RUDD N D, et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chem Soc Rev, 2017, 46(11): 3242-3285.

    [28] [28] ZHANG Y, YUAN S, DAY G, et al. Luminescent sensors based on metal-organic frameworks[J]. Coordin Chem Rev, 2018, 354:28-45.

    [30] [30] CUI Y, CHEN B, QIAN G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications[J].Coordin Chem Rev, 2014, 273: 76-86.

    [31] [31] CUI Y, ZHANG J, HE H, et al. Photonic functional metal-organic frameworks[J]. Chem Soc Rev, 2018, 47(15): 5740-5785.

    [32] [32] YOUNIS S A, BHARDWAJ N, BHARDWAJ S K, et al. Rare earth metal-organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications[J]. Coordin Chem Rev,2021, 429: 213620.

    [33] [33] KURODA Y, SUGOU K, SASAKI K. Nonameric porphyrin assembly: Antenna effect on energy transfer[J]. J Am Chem Soc,2000, 122(32): 7833-7834.

    [34] [34] AN J, SHADE C M, CHENGELIS-CZEGAN D A, et al. Zinc-adeninate metal?organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations[J]. J Am Chem Soc, 2011, 133(5):1220-1223.

    [35] [35] WANG C, TIAN L, ZHU W, et al. Dye@ bio-MOF-1 composite as a dual-emitting platform for enhanced detection of a wide range of explosive molecules[J]. ACS Appl Mater Interfaces,2017, 9(23): 20076-20085.

    [36] [36] BUSO D, JASIENIAK J, LAY M D, et al. Highly luminescent metal-organic frameworks through quantum dot doping[J]. Small,2012, 8(1): 80-88.

    [37] [37] ZHAO D, YU K, HAN X, et al. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing,and information encryption[J]. Chem Commun, 2022, 58(6):747-770.

    [38] [38] LIN L, LUO Y, TSAI P, et al. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications[J]. TrAC Trend Anal Chem, 2018, 103: 87-101.

    [39] [39] LYU J, ZHANG X, OTAKE K-I, et al. Topology and porosity control of metal-organic frameworks through linker functionalization[J]. Chem Sci, 2019, 10(4): 1186-1192.

    [40] [40] LI Z, JIANG F, YU M, et al. Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework[J]. Nat commun, 2022, 13(1): 2142-2142.

    [41] [41] ZHANG M, FENG G, SONG Z, et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds[J]. J Am Chem Soc, 2014, 136(20): 7241-7244.

    [42] [42] BRITES C D, LIMA P P, SILVA N J, et al. Thermometry at the nanoscale[J]. Nanoscale, 2012, 4(16): 4799-4829.

    [43] [43] ROY D, BROOKS W L, SUMERLIN B S. New directions in thermoresponsive polymers[J]. Chem Soc Rev, 2013, 42(17):7214-7243.

    [44] [44] CUI Y, XU H, YUE Y, et al. A Luminescent mixed-lanthanide metal-organic framework thermometer[J]. J Am Chem Soc, 2012,134(9): 3979-3982.

    [45] [45] RAO X, SONG T, GAO J, et al. A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer[J]. J Am Chem Soc, 2013, 135(41): 15559-15564.

    [46] [46] CUI Y, ZOU W, SONG R, et al. A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer[J]. Chem Commun, 2014,50(6): 719-721.

    [47] [47] ZHAO D, RAO X, YU J, et al. Design and synthesis of an MOF thermometer with high sensitivity in the physiological temperature range[J]. Inorg Chem, 2015, 54(23): 11193-11199.

    [48] [48] ZHAO D, YUE D, JIANG K, et al. Isostructural Tb3+/Eu3+ co-doped metal organic framework based on pyridine-containing dicarboxylate ligands for ratiometric luminescence temperature sensing[J]. Inorg Chem, 2019, 58(4): 2637-2644.

    [49] [49] XIA T, SHAO Z, YAN X, et al. Tailoring the triplet level of isomorphic Eu/Tb mixed MOFs for sensitive temperature sensing[J]. Chem Commun, 2021, 57(25): 3143-3146.

    [50] [50] LIAN X, ZHAO D, CUI Y, et al. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range[J]. Chem Commun, 2015, 51(100):17676-17679.

    [51] [51] ZHAO D, ZHANG J, YUE D, et al. A highly sensitive near-infrared luminescent metal-organic framework thermometer in the physiological range[J]. Chem Commun, 2016, 52(53):8259-8262.

    [52] [52] YUE D, ZHANG J, ZHAO D, et al. Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks[J]. J Solid State Chem, 2016, 241: 99-104.

    [53] [53] CADIAU A, BRITES C D S, COSTA P M F J, et al. Ratiometric nanothermometer based on an emissive Ln3+-organic framework[J]. Acs Nano, 2013, 7(8): 7213-7218.

    [54] [54] WANG Z, ANANIAS D, CARNE SANCHEZ A, et al. Lanthanide-organic framework nanothermometers prepared by spray-drying[J]. Adv Funct Mater, 2015, 25(19): 2824-2830.

    [55] [55] LI L, ZHU Y, ZHOU X, et al. Visible-light excited luminescent thermometer based on single lanthanide organic frameworks[J].Adv Funct Mater, 2016, 26(47): 8677-8684.

    [56] [56] TRANNOY V, CARNEIRO NETO A N, BRITES C D S, et al.Engineering of mixed Eu3+/Tb3+ metal-organic frameworks luminescent thermometers with tunable sensitivity[J]. Adv Opt Mater, 2021, 9(6): 2001938.

    [57] [57] XIA T, WANG J, JIANG K, et al. A Eu/Gd-mixed metal-organic framework for ultrasensitive physiological temperature sensing[J].Chin Chem Lett, 2018, 29(6): 861-864.

    [58] [58] XIA T, WAN Y, YAN X, et al. The ratiometric detection of the biomarker Ap5A for dry eye disease and physiological temperature using a rare trinuclear lanthanide metal-organic framework[J]. Dalton Trans, 2021, 50(8): 2792-2799.

    [59] [59] ZHAO S N, LI L J, SONG X Z, et al. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing[J]. Adv Funct Mater, 2015, 25(9): 1463-1469.

    [60] [60] ZHAO D, YUE D, ZHANG L, et al. Cryogenic luminescent Tb/Eu-MOF thermometer based on a fluorine-modified tetracarboxylate ligand[J]. Inorg Chem, 2018, 57(20): 12596-12602.

    [61] [61] HAN Y H, TIAN C B, LI Q H, et al. Highly chemical and thermally stable luminescent EuxTb1?x MOF materials for broad-range pH and temperature sensors[J]. J Mater Chem C,2014, 2(38): 8065-8070.

    [62] [62] D'VRIES R F, áLVAREZ GARCíA S, SNEJKO N, et al. Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence[J]. J Mater Chem C, 2013,1(39): 6316-6324.

    [63] [63] WEI Y, SA R, LI Q, et al. Highly stable and sensitive LnMOF ratiometric thermometers constructed with mixed ligands[J].Dalton Trans, 2015, 44(7): 3067-3074.

    [64] [64] XIA T, SONG T, CUI Y, et al. A dye encapsulated terbium-based metal-organic framework for ratiometric temperature sensing[J].Dalton Trans, 2016, 45(46): 18689-18695.

    [65] [65] CUI Y, SONG R, YU J, et al. Dual-emitting MOF superset of dye composite for ratiometric temperature sensing[J]. Adv Mater,2015, 27(8): 1420-1425.

    [66] [66] KACZMAREK A M, LIU Y Y, WANG C, et al. Lanthanide"chameleon" multistage anti-counterfeit materials[J]. Adv Funct Mater, 2017, 27(20): 1700258.

    [67] [67] YANG X, ZOU H, SUN X, et al. One-step synthesis of mixed lanthanide metal-organic framework films for sensitive temperature mapping[J]. Adv Opt Mater, 2019, 7(19): 1900336.

    [68] [68] FENG T, YE Y, LIU X, et al. A robust mixed-lanthanide polyMOF membrane for ratiometric temperature sensing[J]. Angew Chem Int Ed, 2020, 59(48): 21752-21757.

    [69] [69] FENG J F, GAO S Y, LIU T F, et al. Preparation of dual-emitting Ln@UiO-66-Hybrid films via electrophoretic deposition for ratiometric temperature sensing[J]. ACS Appl Mater Interfaces,2018, 10(6): 6014-6023.

    [70] [70] CHEN B, YANG Y, ZAPATA F, et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules[J]. Adv Mater, 2007, 19(13): 1693-1696.

    [71] [71] CHEN B, WANG L, XIAO Y, et al. A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions[J]. Angew Chem Int Ed, 2009, 48(3): 500-503.

    [72] [72] CHEN B, WANG L, ZAPATA F, et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions[J]. J Am Chem Soc, 2008, 130(21): 6718-6719.

    [73] [73] YAN B Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing[J]. Acc Chem Res, 2017, 50(11): 2789-2798.

    [74] [74] XU G W, WU Y P, DONG W W, et al. A multifunctional Tb-MOF for highly discriminative sensing of Eu3+/Dy3+ and as a catalyst support of Ag nanoparticles[J]. Small, 2017, 13(22): 1602996.

    [76] [76] PAN M, LIAO W M, YIN S Y, et al. Single-phase white-lightemitting and photoluminescent color-tuning coordination assemblies[J]. Chem Rev, 2018, 118(18): 8889-8935.

    [77] [77] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J].Chem Soc Rev, 2014, 43(16): 5815-5840.

    [78] [78] WU S, MIN H, SHI W, et al. Multicenter metal-organic framework-based ratiometric fluorescent sensors[J]. Adv Mater,2020, 32(3): 1805871.

    [79] [79] WANDERLEY M M, WANG C, WU C D, et al. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols[J]. J Am Chem Soc, 2012, 134(22): 9050-9053.

    [80] [80] LI Y, ZHANG S, SONG D. A luminescent metal-organic framework as a turn-on sensor for DMF vapor[J]. Angew Chem Int Ed, 2013, 52(2): 710-713.

    [81] [81] YUE D, WANG Y, CHEN D, et al. Solvent triggering structural changes for two terbium-based metal-organic frameworks and their photoluminescence sensing[J]. Chem Commun, 2020, 56(31):4320-4323.

    [82] [82] YUE D, ZHAO D, ZHANG J, et al. A luminescent cerium metal-organic framework for the turn-on sensing of ascorbic acid[J]. Chem Commun, 2017, 53(81): 11221-11224.

    [83] [83] CAO W, XIA T, CUI Y, et al. Lanthanide metal-organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH[J]. Chem Commun, 2020,56(74): 10851-10854.

    [84] [84] YIN H Q, YIN X B. Metal-organic frameworks with multiple luminescence emissions: designs and applications[J]. Acc Chem Res, 2020, 53(2): 485-495.

    [85] [85] ZHANG S Y, SHI W, CHENG P, et al. A mixed-crystal lanthanide zeolite-like metal-organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker[J]. J Am Chem Soc,2015, 137(38): 12203-12206.

    [86] [86] ZHOU J, LI H, ZHANG H, et al. A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor[J]. Adv Mater, 2015, 27(44): 7072-7077.

    [87] [87] WU S, LIN Y, LIU J, et al. Rapid Detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor[J]. Adv Funct Mater, 2018,28(17): 1707169.

    [88] [88] LIU Y, LIU L, CHEN X, et al. Single-crystalline ultrathin 2D porous nanosheets of chiral metal-organic frameworks[J]. J Am Chem Soc, 2021, 143(9): 3509-3518.

    [89] [89] ZHU C, TANG H, YANG K, et al. Homochiral dodecanuclear lanthanide “cage in cage” for enantioselective separation[J]. J Am Chem Soc, 2021, 143(32): 12560-12566.

    [91] [91] HAN Z, WANG K, GUO Y, et al. Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition[J]. Nat Commun, 2019, 10: 1-7.

    [92] [92] HAN Z, WANG K, MIN H, et al. Bifunctionalized metal-organic frameworks for pore-size-dependent enantioselective sensing[J].Angew Chem Int Ed, 2022: e202204066.

    [93] [93] XIA T, ZHANG J Our journey of developing dual-emitting metal-organic framework-based fluorescent sensors[J]. Z Anorg Allg Chem, 2022, e202100355.

    [94] [94] YUE D, HUANG Y, ZHANG L, et al. Ratiometric luminescence sensing based on a mixed Ce/Eu metal-organic framework[J]. J Mater Chem C, 2018, 6(8): 2054-2059.

    [95] [95] XIA T, CAO W, CUI Y, et al. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting[J]. Opto-Electron Adv, 2021, 4(8):200063-1-200063-8.

    [96] [96] HAO J N, NIU D, GU J, et al. Structure engineering of a lanthanide-based metal-organic framework for the regulation of dynamic ranges and sensitivities for pheochromocytoma diagnosis[J]. Adv Mater, 2020, 32(23): 2000791.

    [97] [97] HAO J N, LI Y Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: A light-operated dual-mode assay for oxidative DNA damage[J].Adv Funct Mater, 2019, 29(36): 1903058.

    [98] [98] ZENG X, LONG Z, JIANG X, et al. Single bimetallic lanthanide-based metal-organic frameworks for visual decoding of a broad spectrum of molecules[J]. Anal Chem, 2020, 92(7):5500-5508.

    [99] [99] DONG Y, CAI J, FANG Q, et al. Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents[J]. Anal Chem,2016, 88(3): 1748-1752.

    [100] [100] XIA T, ZHU F, CUI Y, et al. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework[J]. J Solid State Chem, 2017, 245: 127-131.

    [101] [101] SONG X Z, SONG S Y, ZHAO S N, et al. Singlecrystal- to-single-crystal transformation of a europium(III) metal-organic framework producing a multi-responsive luminescent sensor[J]. Adv Funct Mater, 2014, 24(26):4034-4041.

    [102] [102] LUO T Y, DAS P, WHITE D L, et al. Luminescence “turn-on” detection of gossypol using Ln3+-based metal-organic frameworks and Ln3+ salts[J]. J Am Chem Soc, 2020, 142(6):2897-2904.

    [103] [103] ZENG X, HU J, ZHANG M, et al. Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone[J]. Anal Chem, 2019, 92(2): 2097-2102.

    [104] [104] YANG Z R, WANG M M, WANG X S, et al. Boric-acid-functional lanthanide metal-organic frameworks for selective ratiometric fluorescence detection of fluoride ions[J]. Anal Chem, 2017, 89(3): 1930-1936.

    [105] [105] ZHANG Y, LI B, MA H, et al. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework[J]. Biosens Bioelectron,2016, 85: 287-293.

    [106] [106] SHI K, YANG Z, DONG L, et al. Dual channel detection for anthrax biomarker dipicolinic acid: The combination of an emission turn on probe and luminescent metal-organic frameworks[J]. Sensor Actuat B-Chem, 2018, 266: 263-269.

    [107] [107] ZHANG Y, LI B, MA H, et al. A nanoscaled lanthanide metal-organic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer[J]. J Mater Chem C, 2016, 4(30): 7294-7301.

    [108] [108] GUO L, LIANG M, WANG X, et al. The role of l-histidine as molecular tongs: a strategy of grasping Tb3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot[J]. Chem Sci, 2020, 11(9): 2407-2413.

    [109] [109] REN J, NIU Z, YE Y, et al. Second-sphere interaction promoted turn-on fluorescence for selective sensing of organic amines in a Tb-III-based macrocyclic framework[J]. Angew Chem Int Ed,2021, 60(44): 23705-23712.

    [110] [110] XIA T, WAN Y, LI Y, et al. Highly stable lanthanide metal-organic framework as an internal calibrated luminescent sensor for glutamic acid, a neuropathy biomarker[J]. Inorg Chem,2020, 59(13): 8809-8817.

    [111] [111] YIN H Q, WANG X Y, YIN X B. Rotation restricted emission and antenna effect in single metal-organic frameworks[J]. J Am Chem Soc, 2019, 141(38): 15166-15173.

    [112] [112] WENG H, YAN B A sliver ion fabricated lanthanide complex as a luminescent sensor for aspartic acid[J]. Sensor Actuat B-Chem,2017, 253: 1006-1011.

    [113] [113] XU X Y, LIAN X, HAO J N, et al. A double-stimuli-responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: from sensory hydrogels to logic devices[J]. Adv Mater, 2017, 29(37): 1702298.

    [114] [114] WANG J, LI D, YE Y, et al. A fluorescent metal-organic framework for food real-time visual monitoring[J]. Adv Mater,2021, 33(15): 2008020.

    [115] [115] CHEN F, WANG Y M, GUO W, et al. Color-tunable lanthanide metal-organic framework gels[J]. Chem Sci, 2019, 10(6):1644-1650.

    [116] [116] XU X Y, YAN B. Eu (III)-functionalized ZnO@MOF heterostructures: integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles[J]. J Mater Chem A, 2017,5(5): 2215-2223.

    [117] [117] SU Y, YU J, LI Y, et al. Versatile bimetallic lanthanide metal-organic frameworks for tunable emission and efficient fluorescence sensing[J]. Commun Chem, 2018, 1(1): 1-13.

    [118] [118] GUAN L, JIANG Z, CUI Y, et al. An MOF-based luminescent sensor array for pattern recognition and quantification of metal ions[J]. Adv Optical Mater, 2021, 9(9): 2002180.

    [119] [119] XIA T, SONG T, ZHANG G, et al. A terbium metal-organic framework for highly selective and sensitive luminescence sensing of Hg2+ ions in aqueous solution[J]. Chem Eur J, 2016,22(51): 18429-18434.

    [120] [120] XU X Y, YAN B. Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu3+[J]. J Mater Chem C, 2016, 4(7): 1543-1549.

    [121] [121] XIA T, ZHU F, JIANG K, et al. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF[J]. Dalton Trans, 2017, 46(23): 7549-7555.

    [122] [122] LU Y, YAN B A ratiometric fluorescent pH sensor based on nanoscale metal-organic frameworks (MOFs) modified by europium(III) complexes[J]. Chem Commun, 2014, 50(87):13323-13326.

    [123] [123] ZHAO Y, WAN M Y, BAI J P, et al. pH-modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids[J].J Mater Chem A, 2019, 7(18): 11127-11133.

    [124] [124] ZHANG X, JIANG K, HE H, et al. A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH[J]. Sensor Actuat B-Chem, 2018, 254:1069-1077.

    [125] [125] XIA T, CUI Y, YANG Y, et al. Highly stable mixed-lanthanide metal-organic frameworks for self-referencing and colorimetric Luminescent pH Sensing[J]. Chemnanomat, 2017, 3(1): 51-57.

    [126] [126] YE J W, LIN J M, MO Z W, et al. Mixed-lanthanide porous coordination polymers showing range-tunable ratiometric luminescence for O2 sensing[J]. Inorg Chem, 2017, 56(7):4238-4243.

    [127] [127] CHEN D M, ZHANG N N, LIU C S, et al. Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing[J]. J Mater Chem C, 2017, 5(9): 2311-2317.

    [128] [128] ZHANG X, HU Q, XIA T, et al. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks[J]. ACS Appl Mater Interfaces, 2016, 8(47):32259-32265.

    [129] [129] WENG H, XU X Y, YAN B. Novel multi-component photofunctional nanohybrids for ratio-dependent oxygen sensing[J]. J Colloid Interf Sci, 2017, 502: 8-15.

    [130] [130] QIAO X, MA Z, SI L, et al. Doping metal-organic framework with a series of europium-antenna cations: obviously improved spectral response for O2 gas via long-range energy roll-back procedure[J]. Sensor Actuat B-Chem, 2019, 299: 126978.

    [131] [131] DOU Z, YU J, CUI Y, et al. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors[J]. J Am Chem Soc, 2014, 136(15): 5527-5530.

    [132] [132] ZHANG J, YUE D, XIA T, et al. A luminescent metal-organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia[J]. Micropor Mesopor Mater, 2017, 253:146-150.

    [133] [133] ZHANG J, LIU F, GAN J, et al. Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns[J]. Sci China Mater, 2019, 62(10): 1445-1453.

    [134] [134] ZHANG J, XIA T, ZHAO D, et al. In situ secondary growth of Eu(III)-organic framework film for fluorescence sensing of sulfur dioxide[J]. Sensor Actuat B-Chem, 2018, 260: 63-69.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Heqi, CUI Yuanjing, QIAN Guodong. Development on Fluorescence Sensing Properties of Lanthanide Metal-Organic Frameworks[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3165

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Sep. 2, 2022

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email: Heqi ZHENG (12026070@zju.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220725

    Topics