Optics and Precision Engineering, Volume. 26, Issue 7, 1827(2018)
Hyper-spectral image classification using spatial-spectral manifold reconstruction
[2] [2] TIEN H N, KOIKE K. Hyperspectral transformation from EO-1 ALI imagery using pseudo-hyperspectral image synthesis algorithm[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 661-665.
[4] [4] WANG L, ZHANG J, LIU P, et al.. Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification[J]. Soft Computing, 2017, 21(1): 213-221.
[5] [5] LIU X, WANG L, ZHANG J, et al.. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 25(6): 1083-1095.
[6] [6] DU P J, XIA J SH, XUE ZH H, et al.. Progress of hyperspectral remote sensing image classification[J]. Journal of remote sensing, 2016, 20 (2): 236-256. (in Chinese)
[7] [7] LUO F L. Study spectral kernel semi supervised graph clustering algorithm of hyperspectral images[D]. Chongqing: Chongqing University, 2016.
[8] [8] ZHANG S, WU C, LIU L, et al.. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[J]. American Journal of Ophthalmology, 2017, 182: 194.
[9] [9] TIAN J, MORILLO C, AZARIAN M H, et al.. Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1793-1803.
[10] [10] CAVALLARO G, RIEDE M, RICHERZHAGEN M, et al.. On understanding big data impacts in remotely sensed image classification using support vector machine methods[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 8(10): 4634-4646.
[11] [11] XIA J, CHANUSSOT J, DU P, et al.. Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(5): 2532-2546.
[12] [12] SOUZAF D M D, SARKAR S, SRIVASTAVA A, et al.. Spatially coherent interpretations of videos using pattern theory[J]. International Journal of Computer Vision, 2017, 121(1): 1-21.
[13] [13] MOHANA, SAPIRO G, BOSCH E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2007, 4(2): 206-210.
[14] [14] PU H Y, CHEN Z, WANG B, et al.. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7008-7022.
[15] [15] FU Y, Y SC, HUANG T S. Classification and feature extraction by simplexization[J]. IEEE Trans. on Information Forensics and Security, 2008, 3(1): 91-100.
[16] [16] CUIM, PRASAD S. Spectral-angle-based discriminant analysis of hyperspectral data for robustness to varying illumination[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 9(9): 4203-4214.
Get Citation
Copy Citation Text
HUANG Hong, CHEN Mei-li, DUAN Yu-le, SHI Guang-yao. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Optics and Precision Engineering, 2018, 26(7): 1827
Category:
Received: Nov. 3, 2017
Accepted: --
Published Online: Oct. 2, 2018
The Author Email: