Ultrafast Science, Volume. 3, Issue 1, 0005(2023)

Gamma-ray Vortex Burst in Nonlinear Thomson Scattering with Refocusing Spiral Plasma Mirror

Weijun Zhou1,2, Wenchao Yan1,2、*, Jinguang Wang3, and Liming Chen1,2、*
Author Affiliations
  • 1Key Laboratory for Laser Plasmas, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.
  • 3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • show less
    References(43)

    [1] [1] Coullet P, Gil L, Rocca F. Optical vortices. Opt Commun. 1989;73(5):403–408.

    [2] [2] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A. 1992;45(11):8185–8189.

    [3] [3] He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett. 1995;75(5):826–829.

    [5] [5] Dholakia K, Simpson NB, Padgett MJ, Allen L. Second-harmonic generation and the orbital angular momentum of light. Phys Rev A. 1996;54(5):R3742–R3745.

    [7] [7] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412(6844):313–316.

    [8] [8] Chattrapiban N, Rogers EA, Cofield D, Hill WT, Roy R. Generation of nondiffracting bessel beams by use of a spatial light modulator. Opt Lett. 2003;28(22):2183–2185.

    [9] [9] Peele AG, McMahon PJ, Paterson D, Tran CQ, Mancuso AP, Nugent KA, Hayes JP, Harvey E, Lai B, McNulty I. Observation of an x-ray vortex. Opt Lett. 2002;27(20):1752–1754.

    [10] [10] Sueda K, Miyaji G, Miyanaga N, Nakatsuka M. Laguerre-gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt Express. 2004;12(15):3548–3553.

    [11] [11] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. 2006;96(16):163905.

    [12] [12] Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett. 1992;17(3):221.

    [13] [13] Ribič PR, Gauthier D, De Ninno G. Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum. Phys Rev Lett. 2014;112(20):203602.

    [14] [14] Wang JW, Zepf M, Rykovanov SG. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions. Nat Commun. 2019;10(1):5554.

    [15] [15] van Veenendaal M. Interaction between x-ray and magnetic vortices. Phys Rev B. 2015;92(24):245116.

    [16] [16] Lin ZY, Hong MH. Femtosecond laser precision engineering: From micron, submicron, to nanoscale. Ultrafast Sci. 2021;2021:1–22.

    [17] [17] Ivanov IP. Colliding particles carrying nonzero orbital angular momentum. Phys Rev D. 2011;83(9):093001.

    [18] [18] van Veenendaal M, McNulty I. Prediction of strong dichroism induced by x rays carrying orbital momentum. Phys Rev Lett. 2007;98(15):157401.

    [19] [19] Friesecke G, James RD, Jüstel D. Twisted x-rays: Incoming waveforms yielding discrete diffraction patterns for helical structures. SIAM J Appl Math. 2016;76(3):1191–1218.

    [20] [20] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Shadow effects in spiral phase contrast microscopy. Phys Rev Lett. 2005;94(23):233902.

    [21] [21] Ye L, Rouxel JR, Asban S, Rosner B, Mukamel S. Probing molecular chirality by orbital-angular-momentum-carrying x-ray pulses. J Chem Theory Comput. 2019;15(7):4180–4186.

    [22] [22] Stamm C, Pontius N, Kachel T, Wietstruk M, Dürr HA. Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited ni films during ultrafast demagnetization. Phys Rev B. 2010;81(10):104425.

    [24] [24] Tamburini F, Thidé B, Molina-Terriza G, Anzolin G. Twisting of light around rotating black holes. Nat Phys. 2011;7(3):195–197.

    [25] [25] Hartemann FV, Troha AL, Baldis HA, Gupta A, Kerman AK, Landahl EC, Luhmann Jr NC, Van Meter JR. High-intensity scattering processes of relativistic electrons in vacuum and their relevance to high-energy astrophysics. ApJS. 2000;127(2):347–356.

    [26] [26] Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T. Roadmap on structured light. J Opt. 2017;19(1):013001.

    [27] [27] Maurer-Grubinger C, Bernet S, Ritsch-Marte M. Twisted photons. Weinheim (Germany): Wiley; 2011. Chapter 8, Spiral phase contrast microscopy; p. 143–154.

    [28] [28] Liu Y-Y, Salamin YI, Dou Z-K, Xu Z-F, Li J-X. Vortex γ rays from scattering laser bullets off ultrarelativistic electrons. Opt Lett. 2020;45(2):395–398.

    [29] [29] Chen Y-Y, Li J-X, Hatsagortsyan KZ, Keitel CH. γ-ray beams with large orbital angular momentum via nonlinear Compton scattering with radiation reaction. Phys Rev Lett. 2018;121(7):074801.

    [31] [31] Liu K, Yu T, Zou D, Xu X, Yin Y, Shao F. Twisted radiation from nonlinear Thomson scattering with arbitrary incident angle. Eur Phys J D. 2020;74(1):7.

    [32] [32] Taira Y, Hayakawa T, Katoh M. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light. Sci Rep. 2017;7(1):5018.

    [33] [33] Petrillo V, Dattoli G, Drebot I, Nguyen F. Compton scattered x-gamma rays with orbital momentum. Phys Rev Lett. 2016;117(12):123903.

    [34] [34] Sasaki S, McNulty I. Proposal for generating brilliant x-ray beams carrying orbital angular momentum. Phys Rev Lett. 2008;100(12):124801.

    [35] [35] Geng H-P, Chen J-H, Zhao Z-T. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL. Nucl Sci Techniques. 2020;31(9):88.

    [36] [36] Wang X, Liu X, Lu X, Chen J, Long Y, Li W, Chen H, Chen X, Bai P, Li Y, et al. 13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility. Ultrafast Science. 2022;2022:9894358.

    [37] [37] Jackson JD. Classical electrodynamics. 3rd ed. New York (NY): Wiley; 1998.

    [38] [38] Esarey E, Ride SK, Sprangle P. Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993;48(4):3003–3021.

    [39] [39] Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons. Phys Plasmas. 2017;24(9):093110.

    [40] [40] Nie Z, Pai C-H, Hua J, Zhang C, Wu Y, Wan Y, Li F, Zhang J, Cheng Z, Su Q, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat Photon. 2018;12(8):489–494.

    [41] [41] Arber TD, Bennett K, Brady CS, Lawrence-Douglas A, Ramsay MG, Sircombe NJ, Gillies P, Evans RG, Schmitz H, Bell AR, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys Control Fusion. 2015;57(11):113001.

    [42] [42] Chen M, Esarey E, Geddes CGR, Schroeder CB, Plateau GR, Bulanov SS, Rykovanov S, Leemans WP. Modeling classical and quantum radiation from laser-plasma accelerators. Phys Rev Accel Beams. 2013;16(3):030701.

    [43] [43] Thomas AGR. Algorithm for calculating spectral intensity due to charged particles in arbitrary motion. Phys Rev Accel Beams. 2010;13(2):020702.

    Tools

    Get Citation

    Copy Citation Text

    Weijun Zhou, Wenchao Yan, Jinguang Wang, Liming Chen. Gamma-ray Vortex Burst in Nonlinear Thomson Scattering with Refocusing Spiral Plasma Mirror[J]. Ultrafast Science, 2023, 3(1): 0005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 19, 2022

    Accepted: Nov. 17, 2022

    Published Online: Dec. 4, 2023

    The Author Email: Yan Wenchao (wenchaoyan@sjtu.edu.cn?cc=lmchen@sjtu.edu.cn), Chen Liming (wenchaoyan@sjtu.edu.cn?cc=lmchen@sjtu.edu.cn)

    DOI:10.34133/ultrafastscience.0005

    Topics