High Power Laser and Particle Beams, Volume. 36, Issue 10, 103003(2024)

Influence of thermal radiation on cathode temperature of traveling wave tubes

Yanwei Li1... Fei Li1, Xinwen Shang1, Liu Xiao1, Jiandong Zhao1, Hongxia Yi1, Jie Zhou1, Mingchen Zhang1 and Yongkang Shi2 |Show fewer author(s)
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 101407, China
  • 2Shandong Microwave Electric Vacuum Technology Co. Ltd., Jinan 250103, China
  • show less
    Figures & Tables(20)
    Structure diagram of cathode-thermal shielding assembly
    Temperature measurement test site and data curve of cathode-thermal shielding assembly
    Structure diagram of heater lead leg
    Revised temperature measurement test data curve of cathode-thermal shielding assembly
    Heater power-cathode temperature curve for testing and simulation fitting
    Surface emissivity-cathode temperature curve
    Surface emissivity of cathode cylinder and cathode support cylinder-heater power curve
    Effect of heat loss on cathode temperature
    Installation of electron gun thermal equilibrium test sample
    Finite element model of electron gun thermal simulation
    Curve of heating power- electron gun shell ceramic temperature
    Curve of heating power-electron cathode surface temperature
    Cloud map of temperature distribution of cathode-thermal shielding assembly and electron gun when the heater power is 5.43 W
    • Table 1. Emissivity for thermal simulation of electron guns

      View table
      View in Article

      Table 1. Emissivity for thermal simulation of electron guns

      partmaterialemissivity
      cathodeM-typeε1
      Al2O3 sintered bodyAl2O3ε2
      cathode cylinderMoε3
      cathode support cylinderMoε3
      thermal shielding cylinder4J36ε4
      cathode support cylinder positioning component4J36ε4
    • Table 2. Heat loss data

      View table
      View in Article

      Table 2. Heat loss data

      T/KI/Aρ/(10−5 Ω·mm)εQgenerate/WQloss/W
      13230.69655.840.1530.140.13
      13730.73857.440.1620.160.17
      14230.77759.000.1710.180.20
      14730.81860.560.1800.210.24
    • Table 3. Measurement data statistics of tungsten emissivity

      View table
      View in Article

      Table 3. Measurement data statistics of tungsten emissivity

      authortemperature/Kwavelength/μmε1compared to the value ofthe target condition
      Lü Zheng[27]30002.1~2.40.68~0.69much larger
      Yao Longqing[28]13000.650.46larger
      Yu Kun[29]87330.25much smaller
      Cagran C[30]973~12832.20.26slightly smaller
      Seifter A[31]18000.650.54much larger
      Brodu E[32]130015000.6~2.80.36~0.39similar
    • Table 4. Measurement data statistics of molybdenum emissivity

      View table
      View in Article

      Table 4. Measurement data statistics of molybdenum emissivity

      authortemperature/Kwavelength/μmε3compared to the value ofthe target condition
      Cagran C[30]107314732.40.25similar
      Xu Yihan[37]9232.20.55smaller
      Taylor J E[38]128713500.70.38much larger
      Zhu Yingshan[39]15252.60.15slightly larger
      Brodu E[40]130015000.6~400.2~0.3similar
    • Table 5. Measurement data statistics of iron nickel alloy, iron and steel emissivity

      View table
      View in Article

      Table 5. Measurement data statistics of iron nickel alloy, iron and steel emissivity

      authormaterialtemperature/Kwavelength/μmε3compared to the value ofthe target condition
      Taylor J E[38]iron11470.70.365very much larger
      Wilthan B[41]Fe64Ni3617000.68450.295very much larger
      Bai Yinxue[42]Fe50Ni5017121.60.26much larger
      Yu Kun[43]Steel Q2358231.50.25much larger
    • Table 6. Established thermal radiation boundary conditions

      View table
      View in Article

      Table 6. Established thermal radiation boundary conditions

      correlationradiation faceabsorbing faceemissivityestimate
      to ambientcathode emitting surface and exposed sideambienceε10.46~0.75
      to ambientbottom surface of Al2O3 sintered bodyambienceε20.15~0.2
      to ambientupper and lower end faces of cathode cylinderambienceε30.15~0.3
      surface to surfaceouter surface of cathode cylinderinternal surface of cathode support cylinderε30.15~0.3
      surface to surfaceouter surface of cathode support cylinderinternal surface of thermal shielding cylinderε30.15~0.3
      to ambientouter surface of thermal shielding cylinderambienceε40.1~0.2
      to ambientinner and outer surfaces of the cathode support cylinder positioning componentambienceε40.1~0.2
    • Table 7. Emissivity values determined through thermal simulation

      View table
      View in Article

      Table 7. Emissivity values determined through thermal simulation

      partmaterialemissivityvalue
      cathodeM-typeε10.65
      Al2O3 sintered bodyAl2O3ε20.16
      cathode cylinderMoε30.23
      cathode support cylinderMoε30.23
      thermal shielding cylinder4J36ε40.12
      thermal shielding cylinder positioning component4J36ε40.12
    Tools

    Get Citation

    Copy Citation Text

    Yanwei Li, Fei Li, Xinwen Shang, Liu Xiao, Jiandong Zhao, Hongxia Yi, Jie Zhou, Mingchen Zhang, Yongkang Shi. Influence of thermal radiation on cathode temperature of traveling wave tubes[J]. High Power Laser and Particle Beams, 2024, 36(10): 103003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 8, 2024

    Accepted: Jul. 5, 2024

    Published Online: Nov. 13, 2024

    The Author Email:

    DOI:10.11884/HPLPB202436.240148

    Topics