Journal of Synthetic Crystals, Volume. 53, Issue 10, 1657(2024)
Research Progress on Gallium Garnet Series Single Crystal with Large Lattice Constant for Magneto-Optical Substrates
[1] [1] MEYERS R A. Encyclopedia of physical science and technology[M]. 3rd ed. New York: Academic Press, 2001.
[2] [2] SHINAGAWA K. Magneto-optics[M]. Berlin: Springer Berlin Heidelberg, 2000: 137-177.
[7] [7] GELLER S, GILLEO M A. Structure and ferrimagnetism of yttrium and rare-earth-iron garnets[J]. Acta Crystallographica, 1957, 10(3): 239.
[8] [8] DUBS C, SURZHENKO O, LINKE R, et al. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses[J]. Journal of Physics D: Applied Physics, 2017, 50(20): 204005.
[9] [9] JIN L C, JIA K C, HE Y J, et al. Pulsed laser deposition grown yttrium-iron-garnet thin films: effect of composition and iron ion valences on microstructure and magnetic properties[J]. Applied Surface Science, 2019, 483: 947-952.
[10] [10] PARK M B, CHO N H. Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce∶YIG) films prepared by RF magnetron sputter techniques[J]. Journal of Magnetism and Magnetic Materials, 2001, 231(2/3): 253-264.
[11] [11] NICOLAS J, COUTURES J, COUTURES J P, et al. Sm2O3-Ga2O3 and Gd2O3-Ga2O3 phase diagrams[J]. Journal of Solid State Chemistry, 1984, 52(2): 101-113.
[14] [14] BRANDLE C D, VALENTINO A J. Czochralski growth of rare earth gallium garnets[J]. Journal of Crystal Growth, 1972, 12(1): 3-8.
[15] [15] XU Y N, CHING W Y, BRICKEEN B K. Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12[J]. Physical Review B, 2000, 61(3): 1817-1824.
[16] [16] BRANDLE C D, BARNS R L. Crystal stoichiometry and growth of rare-earth garnets containing scandium[J]. Journal of Crystal Growth, 1973, 20(1): 0022024873900298.
[18] [18] MATEIKA D, LAURIEN R, RUSCHE C. Lattice parameters and distribution coefficients as function of Ca, Mg and Zr concentrations in czochralski grown rare earth gallium garnets[J]. Journal of Crystal Growth, 1982, 56(3): 677-689.
[19] [19] MOMMA K, IZUMI F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276.
[22] [22] BOUDIAR T, PAYET-GERVY B, BLANC-MIGNON M F, et al. Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering [J]. Journal of Magnetism and Magnetic Materials, 2004, 284: 77-85.
[27] [27] LI H Y, SUN D L, ZHANG H L, et al. Growth, rietveld refinement, Raman spectrum and dislocation of Ca2+/Mg2+/Zr4+-substituted GGG: a potential substrate and laser host material[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(15): 1008.
[28] [28] WANG Z T, SUN D L, ZHANG H L, et al. Growth, thermal, spectroscopy and 2.7 m multiwavelength laser output of Er∶GYAP crystal[EB/J]. Journal of Rare Earths, 2024. https://doi.org/10.1016/j.jre.2024.05.002.
[30] [30] ZHOU H, MA X H, CHEN G T, et al. Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0 m[J]. Journal of Alloys and Compounds, 2009, 475(1/2): 555-559.
[33] [33] COCKAYNE B, LENT B, ROSLINGTON J M. Interface shape changes during the Czochralski growth of gadolinium gallium garnet single crystals[J]. Journal of Materials Science, 1976, 11(2): 259-263.
[34] [34] TAKAGI K, FUKAZAWA T, ISHII M. Inversion of the direction of the solid-liquid interface on the Czochralski growth of GGG crystals[J]. Journal of Crystal Growth, 1976, 32(1): 89-94.
[35] [35] HAN Z Y, SUN D L, ZHANG H L, et al. Investigation on the growth and properties of six garnet single crystals with large lattice constants[J]. Crystal Research and Technology, 2021, 56(5): 2000221.
[36] [36] DING J J, LIU T, CHANG H C, et al. Sputtering growth of low-damping yttrium-iron-garnet thin films[J]. IEEE Magnetics Letters, 2020, 11: 5502305.
[37] [37] GURJAR G, SHARMA V, PATNAIK S, et al. Structural and magnetization dynamic properties of single crystalline Bi-doped YIG thin film grown on GGG substrate having different planes[C]//Dae Solid State Physics Symposium 2019, AIP Conference Proceedings. Jodhpur, India. AIP Publishing, 2020, 2265: 030337.
[39] [39] WANG M Q, ZHANG F F, LI J J, et al. Tunable millisecond narrow-band Nd∶GSGG laser around 1336.6 nm for 27Al+ optical clock[J]. Applied Physics B, 2016, 122(5): 110.
[40] [40] DRUBE J, HUBER G, MATEIKA D. Flashlamp-pumped Cr3+∶GSAG and Cr3+∶GSGG: slope efficiency, resonator design, color centers and tunability[C]//Advanced Solid State Lasers. Zigzag, Oregon. Washington, D.C.: OSA, 1986.
[42] [42] LEE-WONG E, DING J J, WANG X C, et al. Quantum sensing of spin fluctuations of magnetic insulator films with perpendicular anisotropy[J]. Physical Review Applied, 2021, 15(3): 034031.
[43] [43] WU Y, WEN K B, CHEN J K, et al. Strain-modulated spin Hall magnetoresistance in YIG/Pt heterojunctions[J]. Journal of Physics D Applied Physics, 2023, 56(4): 045305.
[44] [44] ZHANG Y Z, XU B, TIAN Q Y, et al. Sub-15-ns passively Q-switched Er∶YSGG laser at 2.8 m with Fe∶ZnSe saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(7): 565-568.
[45] [45] YE X L, XU X F, REN H J, et al. Study of LD side-pumped two-rod Er∶YSGG mid-infrared laser with 61-W output power[J]. Optics Communications, 2022, 507: 127608.
[46] [46] HAN Z Y, SUN D L, ZHANG H L, et al. Investigation of temperature distribution and 2.79 m laser performance on the Er∶YSGG single crystal fiber[J]. Optics Communications, 2022, 502: 127426.
[47] [47] ZHANG H L, SUN D L, LUO J Q, et al. 28.02 W LD side-pumped CW laser operated at 2.8 m in YSGG/Er∶YSGG/YSGG crystal[J]. Optics Express, 2024, 32(7): 11665-11672.
[48] [48] DING S J, REN H, LI H Y, et al. Hardness, Raman spectrum, thermal properties, and laser damage threshold of Y3Sc2Ga3O12 single crystal[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1616-1622.
[49] [49] SHEN Y M, JIA Y C, CHEN F. Femtosecond laser-induced optical waveguides in crystalline garnets: fabrication and application[J]. Optics Laser Technology, 2023, 164: 109528.
[50] [50] CHEN J K, SUN D L, LUO J Q, et al. Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation[J]. Optics Communications, 2013, 301: 84-87.
[51] [51] LI G, BAI H, SU J, et al. Tunable perpendicular magnetic anisotropy in epitaxial Y3Fe5O12 films[J]. APL Materials, 2019, 7(4): 041104.
[52] [52] GUO C Y, WAN C H, ZHAO M K, et al. Spin-orbit torque switching in perpendicular Y3Fe5O12/Pt bilayer[J]. Applied Physics Letters, 2019, 114(19): 192409.
[53] [53] GUO S D, MCCULLIAN B, CHRIS HAMMEL P, et al. Low damping at few-K temperatures in Y3Fe5O12 epitaxial films isolated from Gd3Ga5O12 substrate using a diamagnetic Y3Sc2.5Al2.5O12 spacer[J]. Journal of Magnetism and Magnetic Materials, 2022, 562: 169795.
[54] [54] GUO S D, RUSSELL D, LANIER J, et al. Strong on-chip microwave photon-magnon coupling using ultralow-damping epitaxial Y3Fe5O12 films at 2 K[J]. Nano Letters, 2023, 23(11): 5055-5060.
[55] [55] KUPCHINSKAYA N E, VETOSHKO P M, KUZMICHEV A N, et al. Magneto-optical epitaxial bismuth-substituted yttrium iron garnet thin films on a diamagnetic substrate for low temperature applications[J]. Journal of Magnetism and Magnetic Materials, 2024, 591: 171623.
[56] [56] MENG Y, CHEN P, HE W Q, et al. A strategy for enhancing perpendicular magnetic anisotropy in yttrium iron garnet films[J]. Small, 2024, 20(25): 2308724.
[57] [57] FEI Y T, CHOU M M C, CHAI B H T. Crystal growth and morphology of substituted gadolinium gallium garnet[J]. Journal of Crystal Growth, 2002, 240(1): 185-189.
[62] [62] LI H Y, SUN D L, ZHANG H L, et al. Effect of Ca2+/Mg2+/Zr4+ concentrations on the characteristics of substituted gadolinium gallium garnet single crystals with large lattice parameter[J]. Journal of Alloys and Compounds, 2023, 965: 171467.
[63] [63] HANSEN P, KLAGES C, SCHULDT J, et al. Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films[J]. Physical Review B, Condensed Matter, 1985, 31(9): 5858-5864.
[64] [64] LIN Y N, JIN L C, ZHANG H W, et al. Bi-YIG ferrimagnetic insulator nanometer films with large perpendicular magnetic anisotropy and narrow ferromagnetic resonance linewidth[J]. Journal of Magnetism and Magnetic Materials, 2020, 496: 165886.
[65] [65] SOUMAH L, BEAULIEU N, QASSYM L, et al. Ultra-low damping insulating magnetic thin films get perpendicular[J]. Nature Communications, 2018, 9: 3355.
[66] [66] FAKHRUL T, KHURANA B, NEMBACH H T, et al. Substrate-dependent anisotropy and damping in epitaxial bismuth yttrium iron garnet thin films[J]. Advanced Materials Interfaces, 2023, 10(30): 2300217.
[67] [67] FU J B, HUA M X, WEN X, et al. Epitaxial growth of Y3Fe5O12 thin films with perpendicular magnetic anisotropy[J]. Applied Physics Letters, 2017, 110(20): 202403.
[68] [68] LABRANCHE B, QUN W, GALARNEAU P. Diode-pumped-CW and quasi-CW Nd∶GGG(Ca,Mg,Zr) laser[C]. SPIE, 1994: 326-331.
[69] [69] BOULON G, GARAPON C, MONTEIL A. Spectroscopy of new chromium/neodymium doped oxide laser materials: garnets and hexaaluminantes[C]//AIP Conference Proceedings. AIP, 1987, 160(1): 104-113..
[70] [70] ZHOU W L, ZHANG Q L, XIAO J, et al. Sm3+-doped (Ca, Mg, Zr)GGG crystal: a potential reddish-orange laser crystal[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 618-622.
Get Citation
Copy Citation Text
LI Hongyuan, SUN Dunlu, ZHANG Huili, LUO Jianqiao, QUAN Cong, CHENG Maojie. Research Progress on Gallium Garnet Series Single Crystal with Large Lattice Constant for Magneto-Optical Substrates[J]. Journal of Synthetic Crystals, 2024, 53(10): 1657
Category:
Received: Jun. 19, 2024
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: Dunlu SUN (dlsun@aiofm.ac.cn)
CSTR:32186.14.