Optics and Precision Engineering, Volume. 28, Issue 10, 2227(2020)
Research on spindle dynamic rotation-error-measurement technology
[1] [1] CHEN X J. The way for Germany to establish the second powerful country of machine tool industry, manufacturing industry and industrialization in the world[J]. Precise Manufacturing & Automation, 2012(4): 1-2, 60.(in Chinese)
CHEN X J. The way for Germany to establish the second powerful country of machine tool industry, manufacturing industry and industrialization in the world[J]. Precise Manufacturing & Automation, 2012(4): 1-2, 60.(in Chinese)
[2] [2] TLUSTY J. Dynamics of high-speed milling[J]. Journal of Engineering for Industry, 1986, 108(2): 59-67.
TLUSTY J. Dynamics of high-speed milling[J]. Journal of Engineering for Industry, 1986, 108(2): 59-67.
[3] [3] HIRAO M, TLUSGY J. Effect of negative shear on initial chipping[J]. J Mech Eng Lab., 1987,41(5): 215-226.
HIRAO M, TLUSGY J. Effect of negative shear on initial chipping[J]. J Mech Eng Lab., 1987,41(5): 215-226.
[4] [4] ALTINTAS Y, YELLOWLEY I, TLUSTY J. The detection of tool breakage in milling operations[J]. Journal of Engineering for Industry, 1988, 110(3): 271-277.
ALTINTAS Y, YELLOWLEY I, TLUSTY J. The detection of tool breakage in milling operations[J]. Journal of Engineering for Industry, 1988, 110(3): 271-277.
[5] [5] TLUSTY J, SMITH S. NC Programming for Quality in Machining[M]. Dearborn: Soc Manufacturing Engineers, 1990: 483-488.
TLUSTY J, SMITH S. NC Programming for Quality in Machining[M]. Dearborn: Soc Manufacturing Engineers, 1990: 483-488.
[6] [6] BRYAN J B. Test gauge for machine tools having non-disengageable servo drives-has two gauge balls held and separated from each other by telescoping fixture and moving to indicate measurement error: US patent, US4435905-A[P]. [1984-03-13]
BRYAN J B. Test gauge for machine tools having non-disengageable servo drives-has two gauge balls held and separated from each other by telescoping fixture and moving to indicate measurement error: US patent, US4435905-A[P]. [1984-03-13]
[7] [7] BRYAN JB. Workpiece e.g. metal, surface forming method, involves providing slow tool servo assembly with tool and spindle assembly, where tool assembly is oscillated to remove portions of workpiece for forming axially asymmetric portion: US patent, US2004003689-A1[P]. [2004-01-18]. (2006-08-15).
BRYAN JB. Workpiece e.g. metal, surface forming method, involves providing slow tool servo assembly with tool and spindle assembly, where tool assembly is oscillated to remove portions of workpiece for forming axially asymmetric portion: US patent, US2004003689-A1[P]. [2004-01-18]. (2006-08-15).
[8] [8] AOKI Y, OHBA S. The third round method of roundness determination[J]. Precision Machinery, 1966,32(12): 37-32. (in Japanese)
AOKI Y, OHBA S. The third round method of roundness determination[J]. Precision Machinery, 1966,32(12): 37-32. (in Japanese)
[9] [9] DONALDSON R R. A simple method for separating spindle error from test ball roundness error[J]. Ann Cirp, 1972,21(1): 125-126.
DONALDSON R R. A simple method for separating spindle error from test ball roundness error[J]. Ann Cirp, 1972,21(1): 125-126.
[10] [10] NOGUCHI S, TSUKADA T, SAKAMOTO A. Evaluation method to determine radial accuracy of high-precision rotating spindle units[J]. Precision Engineering, 1995, 17(4): 266-273.
NOGUCHI S, TSUKADA T, SAKAMOTO A. Evaluation method to determine radial accuracy of high-precision rotating spindle units[J]. Precision Engineering, 1995, 17(4): 266-273.
[11] [11] GAO W, KIYONO S, NOMURA T. A new multiprobe method of roundness measurements[J]. Precision Engineering, 1996, 19(1): 37-45.
GAO W, KIYONO S, NOMURA T. A new multiprobe method of roundness measurements[J]. Precision Engineering, 1996, 19(1): 37-45.
[12] [12] GAO W, KIYONO S, SUGAWARA T. High-accuracy roundness measurement by a new error separation method[J]. Precision Engineering, 1997, 21(2/3): 123-133.
GAO W, KIYONO S, SUGAWARA T. High-accuracy roundness measurement by a new error separation method[J]. Precision Engineering, 1997, 21(2/3): 123-133.
[13] [13] GREJDA R, MARSH E, VALLANCE R. Techniques for calibrating spindles with nanometer error motion[J]. Precision Engineering, 2005, 29(1): 113-123.
GREJDA R, MARSH E, VALLANCE R. Techniques for calibrating spindles with nanometer error motion[J]. Precision Engineering, 2005, 29(1): 113-123.
[14] [14] GAO W, TANO M, ARAKI T, et al.. Measurement and compensation of error motions of a diamond turning machine[J]. Precision Engineering, 2007, 31(3): 310-316.
GAO W, TANO M, ARAKI T, et al.. Measurement and compensation of error motions of a diamond turning machine[J]. Precision Engineering, 2007, 31(3): 310-316.
[15] [15] MARSH E R, ARNESON D A, MARTIN D L. A comparison of reversal and multiprobe error separation[J]. Precision Engineering, 2010, 34(1): 85-91.
MARSH E R, ARNESON D A, MARTIN D L. A comparison of reversal and multiprobe error separation[J]. Precision Engineering, 2010, 34(1): 85-91.
[16] [16] LEE J, GAO W, SHIMIZU Y, et al.. Spindle error motion measurement of a large precision roll lathe[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 861-867.
LEE J, GAO W, SHIMIZU Y, et al.. Spindle error motion measurement of a large precision roll lathe[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 861-867.
[17] [17] CAPPA S, REYNAERTS D, AL-BENDER F. A sub-nanometre spindle error motion separation technique[J]. Precision Engineering, 2014, 38(3): 458-471.
CAPPA S, REYNAERTS D, AL-BENDER F. A sub-nanometre spindle error motion separation technique[J]. Precision Engineering, 2014, 38(3): 458-471.
[18] [18] CAI H G. Analysis of spindle rotation motion accuracy and its dynamic measurement method[J]. Journal of Harbin Institute of Technology, 1978, 10(2): 56-70. (in Chinese)
CAI H G. Analysis of spindle rotation motion accuracy and its dynamic measurement method[J]. Journal of Harbin Institute of Technology, 1978, 10(2): 56-70. (in Chinese)
[19] [19] ZHONG X X. Measurement of high precision spindle rotation accuracy[J]. Measurement Technique, 1982(5): 5-11. (in Chinese)
ZHONG X X. Measurement of high precision spindle rotation accuracy[J]. Measurement Technique, 1982(5): 5-11. (in Chinese)
[20] [20] HONG M SH. Applying error separation technique to simultaneously measure and separate the radial error motion of machine tool spindle and the shape error of workpiece[J]. Journal of Vibration,Measurement & Diagnosis, 1983, 3(Z1): 1-10. (in Chinese)
HONG M SH. Applying error separation technique to simultaneously measure and separate the radial error motion of machine tool spindle and the shape error of workpiece[J]. Journal of Vibration,Measurement & Diagnosis, 1983, 3(Z1): 1-10. (in Chinese)
[21] [21] YE J SH, GU Q T, ZHANG Y SH. Measuring accuracy of errors separation technique by using multistep method[J]. Acta Metrologica Sinica, 1990(2): 119-123.(in Chinese)
YE J SH, GU Q T, ZHANG Y SH. Measuring accuracy of errors separation technique by using multistep method[J]. Acta Metrologica Sinica, 1990(2): 119-123.(in Chinese)
[22] [22] WANG X H, LI ZH K, YUAN ZH J. The experimental study of on-line measurement and compensatory control for the roundness and cylindricity[J]. Journal of Harbin Institute of Technology, 1995, 27(1): 114-117.(in Chinese)
WANG X H, LI ZH K, YUAN ZH J. The experimental study of on-line measurement and compensatory control for the roundness and cylindricity[J]. Journal of Harbin Institute of Technology, 1995, 27(1): 114-117.(in Chinese)
[23] [23] HONG M SH, DENG Z H. A time domain two point method for in situ measurement and separation of roundness and rotating error motion[J]. China Mechanical Engineering, 1997, 8(2): 88-89, 92.(in Chinese)
HONG M SH, DENG Z H. A time domain two point method for in situ measurement and separation of roundness and rotating error motion[J]. China Mechanical Engineering, 1997, 8(2): 88-89, 92.(in Chinese)
[24] [24] KAN G P. Rotation accuracy measurement for super-precision air spindles and its data processing[J]. Aviation Precision Manufacturing Technology, 1999, 35(3): 5-7.(in Chinese)
KAN G P. Rotation accuracy measurement for super-precision air spindles and its data processing[J]. Aviation Precision Manufacturing Technology, 1999, 35(3): 5-7.(in Chinese)
[25] [25] CHEN H B, CHENG X M, ZHONG X X. Test of aerostatic bearings spindle rotary precision[J]. Journal of Chongqing University: Natural Science Edition, 2000, 23(1): 49-52.(in Chinese)
CHEN H B, CHENG X M, ZHONG X X. Test of aerostatic bearings spindle rotary precision[J]. Journal of Chongqing University: Natural Science Edition, 2000, 23(1): 49-52.(in Chinese)
[26] [26] HONG M SH, DENG Z H, CHEN J Q, et al.. Accurate time domain three point method for error separation of roundness[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1317-1319.(in Chinese)
HONG M SH, DENG Z H, CHEN J Q, et al.. Accurate time domain three point method for error separation of roundness[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1317-1319.(in Chinese)
[27] [27] TAN J B, ZHAO W Q, YANG W G. A new error separation method: phase-distinguish method to improve multi-step error separation method[J]. China Mechanical Engineering, 2001, 12(S1): 161-162.(in Chinese)
TAN J B, ZHAO W Q, YANG W G. A new error separation method: phase-distinguish method to improve multi-step error separation method[J]. China Mechanical Engineering, 2001, 12(S1): 161-162.(in Chinese)
[28] [28] HUANG CH ZH, LI SH Y. The simulation on dynamic measurement of spindle error motions of ultra-precision lathe[J]. Computer Simulation, 2002, 19(6): 96-99.(in Chinese)
HUANG CH ZH, LI SH Y. The simulation on dynamic measurement of spindle error motions of ultra-precision lathe[J]. Computer Simulation, 2002, 19(6): 96-99.(in Chinese)
[29] [29] HUANG CH ZH, LI SH Y. Dynamic measurement of spindle error motionof ultraprecision lathe[J]. Aviation Precision Manufacturing Technology, 2002, 38(4): 1-3.(in Chinese)
HUANG CH ZH, LI SH Y. Dynamic measurement of spindle error motionof ultraprecision lathe[J]. Aviation Precision Manufacturing Technology, 2002, 38(4): 1-3.(in Chinese)
[30] [30] SU H, HONG M SH, WEI Y L, et al.. Cnc machine spindle radial motion error on-line test and signal processing[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6): 56-60.(in Chinese)
SU H, HONG M SH, WEI Y L, et al.. Cnc machine spindle radial motion error on-line test and signal processing[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6): 56-60.(in Chinese)
[31] [31] SU H, HONG M SH, LI Z J, et al.. On-line high-precision measurement for motion error in machine spindle[J]. Manufacturing Technology & Machine Tool, 2003(3): 47-49.(in Chinese)
SU H, HONG M SH, LI Z J, et al.. On-line high-precision measurement for motion error in machine spindle[J]. Manufacturing Technology & Machine Tool, 2003(3): 47-49.(in Chinese)
[32] [32] LIANG SH Q, SUN B Y, HAN L Y, et al.. Research on the dynamic measurement for the rotation accuracy of a spindle[J]. Journal of Changchun University of Technology: Natural Science Edition, 2004, 25(2): 21-23.(in Chinese)
LIANG SH Q, SUN B Y, HAN L Y, et al.. Research on the dynamic measurement for the rotation accuracy of a spindle[J]. Journal of Changchun University of Technology: Natural Science Edition, 2004, 25(2): 21-23.(in Chinese)
[33] [33] ASHOK S D, SAMUEL G L. Modeling, measurement, and evaluation of spindle radial errors in a miniaturized machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(5/6/7/8): 445-461.
ASHOK S D, SAMUEL G L. Modeling, measurement, and evaluation of spindle radial errors in a miniaturized machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(5/6/7/8): 445-461.
[34] [34] JIN L, YAN Z Y, XIE L M, et al.. An experimental investigation of spindle rotary error on high-speed machining center[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1/2/3/4): 327-334.
JIN L, YAN Z Y, XIE L M, et al.. An experimental investigation of spindle rotary error on high-speed machining center[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1/2/3/4): 327-334.
[35] [35] PENG H H, WU Y J, WANG B, et al.. An improved two-point real-time measuring method for radial micro-displacement measurement on high-speed smart boring bar[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5/6/7/8): 925-933.
PENG H H, WU Y J, WANG B, et al.. An improved two-point real-time measuring method for radial micro-displacement measurement on high-speed smart boring bar[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5/6/7/8): 925-933.
[36] [36] CHEN Y, ZHAO X S, GAO W G, et al.. A novel multi-probe method for separating spindle radial error from artifact roundness error[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 623-634.
CHEN Y, ZHAO X S, GAO W G, et al.. A novel multi-probe method for separating spindle radial error from artifact roundness error[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 623-634.
[37] [37] LIU C, JYWE W, LEE H. Development of a simple test device for spindle error measurement using a position sensitive detector[J]. Measurement Science and Technology, 2004, 15(9): 1733-1741.
LIU C, JYWE W, LEE H. Development of a simple test device for spindle error measurement using a position sensitive detector[J]. Measurement Science and Technology, 2004, 15(9): 1733-1741.
[38] [38] FUJIMAKI K, MITSUI K. Radial error measuring device based on auto-collimation for miniature ultra-high-speed spindles[J]. International Journal of Machine Tools and Manufacture, 2007, 47(11): 1677-1685.
FUJIMAKI K, MITSUI K. Radial error measuring device based on auto-collimation for miniature ultra-high-speed spindles[J]. International Journal of Machine Tools and Manufacture, 2007, 47(11): 1677-1685.
[39] [39] CASTRO H F F. A method for evaluating spindle rotation errors of machine tools using a laser interferometer[J]. Measurement, 2008, 41(5): 526-537.
CASTRO H F F. A method for evaluating spindle rotation errors of machine tools using a laser interferometer[J]. Measurement, 2008, 41(5): 526-537.
[40] [40] MURAKAMI H, KAWAGOISHI N, KONDO E, et al.. Optical technique to measure five-degree-of-freedom error motions for a high-speed microspindle[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(6): 845-850.
MURAKAMI H, KAWAGOISHI N, KONDO E, et al.. Optical technique to measure five-degree-of-freedom error motions for a high-speed microspindle[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(6): 845-850.
[41] [41] ANANDAN K P, TULSIAN A S, DONMEZ A, et al.. A Technique for measuring radial error motions of ultra-high-speed miniature spindles used for micromachining[J]. Precision Engineering, 2012, 36(1): 104-120.
ANANDAN K P, TULSIAN A S, DONMEZ A, et al.. A Technique for measuring radial error motions of ultra-high-speed miniature spindles used for micromachining[J]. Precision Engineering, 2012, 36(1): 104-120.
[42] [42] ANANDAN K P, OZDOGANLAR O B. An LDV-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (UHS) micromachining spindles[J]. Precision Engineering, 2013, 37(1): 172-186.
ANANDAN K P, OZDOGANLAR O B. An LDV-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (UHS) micromachining spindles[J]. Precision Engineering, 2013, 37(1): 172-186.
[43] [43] ANANDAN K P, OZDOGANLAR O B. Analysis of error motions of ultra-high-speed (UHS) micromachining spindles[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 1-14.
ANANDAN K P, OZDOGANLAR O B. Analysis of error motions of ultra-high-speed (UHS) micromachining spindles[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 1-14.
[44] [44] ANANDAN K P, OZDOGANLAR O B. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43: 119-131.
ANANDAN K P, OZDOGANLAR O B. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43: 119-131.
[45] [45] GARINEI A, MARSILI R. Design of an optical measurement system for dynamic testing of electrospindles[J]. Measurement, 2013, 46(5): 1715-1721.
GARINEI A, MARSILI R. Design of an optical measurement system for dynamic testing of electrospindles[J]. Measurement, 2013, 46(5): 1715-1721.
[46] [46] KAVITHA C, ASHOK S D. A new approach to spindle radial error evaluation using a machine vision system[J]. Metrology and Measurement Systems, 2017, 24(1): 201-219.
KAVITHA C, ASHOK S D. A new approach to spindle radial error evaluation using a machine vision system[J]. Metrology and Measurement Systems, 2017, 24(1): 201-219.
[48] [48] TU J F, BOSSMANNS B, HUNG S C C. Modeling and error analysis for assessing spindle radial error motions[J]. Precision Engineering, 1997, 21(2/3): 90-101.
TU J F, BOSSMANNS B, HUNG S C C. Modeling and error analysis for assessing spindle radial error motions[J]. Precision Engineering, 1997, 21(2/3): 90-101.
[49] [49] HE Q X, ZHANG H R, YANG J. Analysis of the precision gyration of the spindle supporting magnetic bearings[J]. Mechanical Science and Technology, 1999, 18(4): 3-5.(in Chinese)
HE Q X, ZHANG H R, YANG J. Analysis of the precision gyration of the spindle supporting magnetic bearings[J]. Mechanical Science and Technology, 1999, 18(4): 3-5.(in Chinese)
[50] [50] HONG M SH, WEI Y L, LI J SH. Unified theory of one-dimension and multi-dimension error separation techniques[J]. China Mechanical Engineering, 2000, 11(3): 245-248.(in Chinese)
HONG M SH, WEI Y L, LI J SH. Unified theory of one-dimension and multi-dimension error separation techniques[J]. China Mechanical Engineering, 2000, 11(3): 245-248.(in Chinese)
[51] [51] HONG M SH, CAI P. Analysis and comparison of multi-step error separation technique[J]. Journal of Shanghai Jiao Tong University, 2004, 38(6): 877-881.(in Chinese)
HONG M SH, CAI P. Analysis and comparison of multi-step error separation technique[J]. Journal of Shanghai Jiao Tong University, 2004, 38(6): 877-881.(in Chinese)
[52] [52] MARSH E, COUEY J, VALLANCE R. Nanometer-level comparison of three spindle error motion separation techniques[J]. Journal of Manufacturing Science and Engineering, 2006, 128(1): 180-187.
MARSH E, COUEY J, VALLANCE R. Nanometer-level comparison of three spindle error motion separation techniques[J]. Journal of Manufacturing Science and Engineering, 2006, 128(1): 180-187.
[54] [54] PENG W H, ZHAO W Y, TAO J ZH, et al.. Study on rotational error measurement of ultra-precision aerostatic spindle[J]. Manufacturing Technology & Machine Tool, 2008(10): 55-58.(in Chinese)
PENG W H, ZHAO W Y, TAO J ZH, et al.. Study on rotational error measurement of ultra-precision aerostatic spindle[J]. Manufacturing Technology & Machine Tool, 2008(10): 55-58.(in Chinese)
[55] [55] XU X L, JIANG J, WANG H L. Spindle rotation error measuring system[J]. Manufacturing Technology & Machine Tool, 2008(10): 136-139, 154.(in Chinese)
XU X L, JIANG J, WANG H L. Spindle rotation error measuring system[J]. Manufacturing Technology & Machine Tool, 2008(10): 136-139, 154.(in Chinese)
[56] [56] LU X D, JAMALIAN A. A new method for characterizing axis of rotation radial error motion: Part 1. Two-dimensional radial error motion theory[J]. Precision Engineering, 2011, 35(1): 73-94.
LU X D, JAMALIAN A. A new method for characterizing axis of rotation radial error motion: Part 1. Two-dimensional radial error motion theory[J]. Precision Engineering, 2011, 35(1): 73-94.
[57] [57] LU X, JAMALIAN A, GRAETZ R. A new method for characterizing axis of rotation radial error motion: Part 2. Experimental results[J]. Precision Engineering-journal of the International Societies for Precision Engineering and Nanotechnology, 2011, 35(1): 95-107.
LU X, JAMALIAN A, GRAETZ R. A new method for characterizing axis of rotation radial error motion: Part 2. Experimental results[J]. Precision Engineering-journal of the International Societies for Precision Engineering and Nanotechnology, 2011, 35(1): 95-107.
[58] [58] SHU Q, ZHU M Z, LIU X B, et al.. Radial error motion measurement of ultraprecision axes of rotation with nanometer level precision[J]. Journal of Manufacturing Science and Engineering, 2017, 139(7): 071017.
SHU Q, ZHU M Z, LIU X B, et al.. Radial error motion measurement of ultraprecision axes of rotation with nanometer level precision[J]. Journal of Manufacturing Science and Engineering, 2017, 139(7): 071017.
[59] [59] LIU Q W. Measurement and analysis of spindle dynamic rotation error[J]. Cad/Cam Yu Zhizaoye Xinxihua, 2013(2): 80-84.(in Chinese)
LIU Q W. Measurement and analysis of spindle dynamic rotation error[J]. Cad/Cam Yu Zhizaoye Xinxihua, 2013(2): 80-84.(in Chinese)
[60] [60] HUANG P, LEE W B, CHAN C Y. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 48-56.
HUANG P, LEE W B, CHAN C Y. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 48-56.
[61] [61] HUANG P, LEE W B, CHAN C Y. Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 44-51.
HUANG P, LEE W B, CHAN C Y. Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 44-51.
Get Citation
Copy Citation Text
JIN An, MIAO Yin-xiao, LIU Dong-dong, LIN Jie, JIN Peng, WANG Lei. Research on spindle dynamic rotation-error-measurement technology[J]. Optics and Precision Engineering, 2020, 28(10): 2227
Category:
Received: Jan. 7, 2020
Accepted: --
Published Online: Nov. 25, 2020
The Author Email: