Optics and Precision Engineering, Volume. 31, Issue 14, 2111(2023)

Low-light image enhancement algorithm based on multi-channel fusion attention network

Qingjiang CHEN and Yuan GU*
Author Affiliations
  • School of Science, Xi’an University of Architecture and Technology, Xi’an710055, China
  • show less
    Figures & Tables(14)
    OctConv module
    Channel Attention and Spatial Attention Module in CBAM
    Overall network structure of this paper
    Multi-level feature extraction module
    Cross-scale feature attention module
    Subjective visual contrast of different algorithms on synthesizing low-light images
    Subjective visual comparison of different algorithms on real low-light images
    Subjective visual contrast of enhancement effects of different network structures
    Subjective visual contrast of the enhancement effects of different loss functions
    • Table 1. Average value of evaluation indicators for different algorithms on synthesizing low-light images

      View table
      View in Article

      Table 1. Average value of evaluation indicators for different algorithms on synthesizing low-light images

      方法HESSRRetinexNetKinDZero-DCEMBLLENRISSNet本文算法
      PSNR↑13.661 19.137 518.280 421.779 522.978 825.986 427.341 628.346 5
      SSIM↑0.660 80.564 20.816 40.825 90.849 10.874 00.884 20.906 5
      MSE↓0.037 60.084 30.023 30.006 20.004 80.002 90.001 20.000 7
      VIF↑0.237 50.410 10.519 20.536 70.571 20.578 50.631 00.682 0
      IE↑7.771 56.158 16.444 06.642 16.658 56.767 30.671 66.962 3
    • Table 2. The average value of evaluation indicators for different algorithms on real low-light images

      View table
      View in Article

      Table 2. The average value of evaluation indicators for different algorithms on real low-light images

      方法HESSRRetinexNetKinDZero-DCEMBLLENRISSNet本文算法
      PSNR↑14.056 910.359 319.853 321.468 522.250 126.046 827.001 627.978 1
      SSIM↑0.712 80.593 20.812 80.840 90.853 70.888 50.889 20.925 5
      MSE↓0.041 20.103 30.028 90.018 30.011 30.003 50.001 30.000 7
      VIF↑0.301 30.308 20.440 20.480 60.483 30.576 00.634 60.669 9
      IE↑7.944 76.826 66.607 46.799 36.710 86.856 76.876 76.984 2
    • Table 3. The average value of the evaluation index for the enhancement effect of different network structures

      View table
      View in Article

      Table 3. The average value of the evaluation index for the enhancement effect of different network structures

      模型PSNR↑SSIM↑VIF↑
      无OctConv25.091 50.890 10.499 7
      无CBAM24.633 80.892 50.505 1
      CBAM替换为SE24.064 10.879 10.489 2
      CBAM替换为ECA26.318 20.893 70.536 6
      通道数均为1626.553 40.899 80.515 4
      通道数均为3225.911 70.899 90.497 7
      通道数均为6424.918 50.891 00.509 9
      本文算法27.978 10.925 50.669 9
    • Table 4. Average of the evaluation indicators for loss functions with different weight coefficients

      View table
      View in Article

      Table 4. Average of the evaluation indicators for loss functions with different weight coefficients

      损失函数PSNR↑SSIM↑VIF↑
      α=0.1,β=0.1,γ=0.823.613 40.831 30.486 7
      α=0.3,β=0.3,γ=0.424.921 30.856 20.509 3
      α=0.5,β=0.3,γ=0.226.613 80.873 70.550 9
      α=0.7,β=0.1,γ=0.227.122 60.899 50.621 0
      α=0.8,β=0.1,γ=0.127.978 10.925 50.669 9
    • Table 5. Average of the evaluation indicators for the enhancement effect of different loss functions

      View table
      View in Article

      Table 5. Average of the evaluation indicators for the enhancement effect of different loss functions

      损失函数PSNR↑SSIM↑VIF↑
      仅含VGG1627.106 20.902 50.558 1
      仅含VGG1927.003 80.901 60.531 6
      无VGG26.181 00.886 90.463 9
      本文算法27.978 10.925 50.669 9
    Tools

    Get Citation

    Copy Citation Text

    Qingjiang CHEN, Yuan GU. Low-light image enhancement algorithm based on multi-channel fusion attention network[J]. Optics and Precision Engineering, 2023, 31(14): 2111

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Aug. 2, 2023

    The Author Email: GU Yuan (2544020739@qq.com)

    DOI:10.37188/OPE.20233114.2111

    Topics