Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1022(2022)

Femtosecond Laser Induced Controllable Crystallization of Second-Order Nonlinear Optical Crystals in Glass

HE Xuan1...2, LIU Qiming1 and ZHAO Lei2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(77)

    [1] [1] QIU J, MIURA K, HIRAO K. Femtosecond laser-induced microfeatures in glasses and their applications[J]. J Non-Cryst Solids, 2008, 354(12): 1100-1111.

    [2] [2] HE X, POUMELLEC B, LIU Q M, et al. One-step photoinscription of asymmetrically oriented fresnoite-type crystals in glass by ultrafast laser[J]. Opt Lett, 2014, 39(18): 5423-5426.

    [3] [3] QIU J R. Controlling the metastable states of glasses by external fields[J]. Int J Appl Glass Sci, 2016, 7(3): 270-284.

    [4] [4] DAVIS K M, MIURA K, SUGIMOTO N, et al. Writing waveguides in glass with a femtosecond laser[J]. Opt Lett, 1996, 21(21): 1729-1731.

    [5] [5] GLEZER E N, MAZUR E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Appl Phys Lett, 1997, 71(7): 882-884.

    [6] [6] MIURA K, QIU J R, INOUYE H, et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Appl Phys Lett, 1997, 71(23): 3329-3331.

    [7] [7] HOMOELLE D, WIELANDY S, GAETA A L, et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt Lett, 1999, 24(18): 1311-1313.

    [8] [8] SUDRIE L, FRANCO M, PRADE B, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Opt Commun, 1999, 171(4/6): 279-284.

    [9] [9] MIURA K, QIU J R, MITSUYU T, et al. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses[J]. Opt Lett, 2000, 25(6): 408-410.

    [10] [10] STRELTSOV A M, BORRELLI N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Opt Lett, 2001, 26(1): 42-43.

    [11] [11] ZEIL P, VOIGTLANDER C, THOMAS J, et al. Femtosecond laser-induced apodized Bragg grating waveguides[J]. Opt Lett, 2013, 38(13): 2354-2356.

    [12] [12] GRENIER J R, FERNANDES L A, HERMAN P R. Femtosecond laser writing of optical edge filters in fused silica optical waveguides[J]. Opt Express, 2013, 21(4): 4493-4502.

    [13] [13] CHEN H Y, LV T, ZHENG A S, et al. Directly writing embedded waveguides in lithium niobate by a femtosecond laser[J]. Optik, 2013, 124(3): 195-197.

    [14] [14] BRICCHI E, MILLS J D, KAZANSKY P G, et al. Birefringent fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Opt Lett, 2002, 27(24): 2200-2202.

    [15] [15] TAN D, SHARAFUDEEN K N, YUE Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Prog Mater Sci, 2016, 76: 154-228.

    [16] [16] DING Y, MIURA Y, NAKAOKA S, et al. Oriented surface crystallization of lithium niobate on glass and second harmonic generation[J]. J Non-Cryst Solids, 1999, 259(1/3): 132-138.

    [17] [17] DING Y, MIURA Y, YAMAJI H. Oriented surface crystallisation of lithium disilicate on glass and the effect of ultrasonic surface treatment[J]. Phys Chem Glass, 1998, 39(6): 338-343.

    [18] [18] ASHBEE K H G. Anisotropic glass-ceramics produced by extrusion through opposed dies[J]. J Mater Sci, 1975, 10(6): 911-917.

    [19] [19] KEDING R, RUSSEL C. The mechanism of electrochemically induced nucleation in glass melts with the composition 2BaO center dot TiO2 center dot 2.75SiO2[J]. J Non-Cryst Solids, 2005, 351 (16/17): 1441-1446.

    [20] [20] TOYOHARA N, BENINO Y, FUJIWARA T, et al. Enhancement and depression in second-order optical nonlinearity of Ba2TiGe2O8 in crystallized glass prepared in a high magnetic field[J]. J Appl Phys, 2006, 99(4): 043515.

    [21] [21] FISETTE B, BUSQUE F, DEGORCE J Y, et al. Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser[J]. Appl Phys Lett, 2006, 88(9): 091104

    [22] [22] KOMATSU T, IHARA R, HONMA T, et al. Patterning of non-linear optical crystals in glass by laser-induced crystallization[J]. J Am Ceram Soc, 2007, 90(3): 699-705.

    [23] [23] ZHU B, DAI Y, MA H L, et al. Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses[J]. Opt Express, 2007, 15(10): 6069-6074.

    [24] [24] MIURA K, QIU J, MITSUYU T. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses[J]. Opt Lett, 2000, 25 (6): 408-410.

    [25] [25] DAI Y, ZHU B, QIU J R, et al. Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser[J]. Appl Phys Lett, 2007, 90(18): 181109.

    [26] [26] YONESAKI Y, MIURA K, ARAKI R, et al. Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser[J]. J Non-Cryst Solids, 2005, 351(10/11): 885-892.

    [27] [27] FAN C X, POUMELLEC B, LANCRY M, et al. Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation[J]. Opt Lett, 2012, 37(14): 2955-2957.

    [28] [28] DAI Y, MA H L, LU B, et al. Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass[J]. Opt Express, 2008, 16(6): 3912-3917.

    [29] [29] DAI Y, ZHU B, QIU J R, et al. Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser[J]. Chem Phys Lett, 2007, 443(4/6): 253-257.

    [30] [30] BRABEC T, KRAUSZ F. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Rev Mod Phys, 2000, 72(2): 545-591.

    [31] [31] SCHAFFER C B, BRODEUR A, MAZUR E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Meas Sci Technol, 2001, 12(11): 1784-1794.

    [32] [32] CHAN J W, HUSER T R, RISBUD S H, et al. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses[J]. Appl Phys a Mater, 2003, 76(3): 367-372.

    [33] [33] CHAN J W, HUSER T, RISBUD S, et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Opt Lett, 2001, 26(21): 1726-1728.

    [34] [34] POUMELLEC B, LANCRY M, CHAHID-ERRAJI A, et al. Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters[J]. Opt Mater Express, 2011, 1(4): 766-782.

    [35] [35] BRICCHI E, KLAPPAUF B G, KAZANSKY P G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Opt Lett, 2004, 29(1): 119-121.

    [36] [36] SHIMOTSUMA Y, KAZANSKY P G, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24): 247405.

    [37] [37] CANNING J, LANCRY M, COOK K, et al. Anatomy of a femtosecond laser processed silica waveguide[J]. Opt Mater Express, 2011, 1(5): 998-1008.

    [38] [38] BHARDWAJ V R, CORKUM P B, RAYNER D M, et al. Stress in femtosecond-laser-written waveguides in fused silica[J]. Opt Lett, 2004, 29(12): 1312-1314.

    [39] [39] POUMELLEC B, SUDRIE L, FRANCO M, et al. Femtosecond laser irradiation stress induced in pure silica[J]. Opt Express, 2003, 11(9): 1070-1079.

    [40] [40] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers[J]. J Non-Cryst Solids, 2010, 356(52/54): 3059-3065.

    [41] [41] KIM E, SHIMOTSUMA Y, SAKAKURA M, et al. Nano periodic structure formation in 4H-SiC crystal using femtosecond laser double-pulses[J]. J Superhard Mater, 2018, 40(4): 259-266.

    [42] [42] HE X, FAN C X, POUMELLEC B, et al. Size-controlled oriented crystallization in SiO2-based glasses by femtosecond laser irradiation[J]. J Opt Soc Am B, 2014, 31(2): 376-381.

    [43] [43] YU B, CHEN B, YANG X, et al. Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses[J]. J Opt Soc Am B, 2004, 21(1): 83-87.

    [44] [44] LU B, DAI Y, MA H L. Femtosecond laser induced Ba2TiSi2O8 crystal precipitation in glass[J]. J Inorg Mater, 2009, 24(4): 769-772.

    [45] [45] CAO J, POUMELLEC B, BRISSET F, et al. Tunable angular- dependent second-harmonic generation in glass by controlling femtosecond laser polarization[J]. J Opt Soc Am B, 2016, 33(4): 741-747.

    [46] [46] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation[J]. Opt Express, 2009, 17(25): 23284-23289.

    [47] [47] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass[J]. Opt Mater Express, 2011, 1(5): 990-995.

    [48] [48] STONE A, JAIN H, DIEROLF V, et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. J Opt Soc Am B, 2013, 30(5): 1234-1240.

    [49] [49] STONE A, JAIN H, DIEROLF V, et al. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics[J]. Sci Rep-Uk, 2015, 5: 10391.

    [50] [50] LIPAT'EV A S, LIPAT'EVA T O, LOTAREV S V, et al. Specifics of the crystallization of lanthanum borogermanate glass by a femtosecond laser beam[J]. Glass Ceram, 2017, 73 (11/12): 441-445.

    [51] [51] LIPATIEV A S, LOTAREV S V, SMAYEV M P, et al. Space-selective crystallization of glass by an optical vortex beam[J]. Crystengcomm, 2020, 22(3): 430-434.

    [52] [52] LIPAT'EV A S, LOTAREV S V, LIPAT'EVA T O, et al. Early stages of crystallization of lanthanum-borogermanate glass by a femtosecond laser beam[J]. Glass Ceram, 2018, 75(5/6): 213-216.

    [53] [53] STONE A, SAKAKURA M, SHIMOTSUMA Y, et al. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control[J]. Mater Design, 2018, 146: 228-238.

    [54] [54] MCANANY S D, VEENHUIZEN K, NOLAN D A, et al. Challenges of laser-induced single-crystal growth in glass: Incongruent matrix composition and laser scanning rate[J]. Cryst Growth Des, 2019, 19(8): 4489-4497.

    [55] [55] MCANANY S D, VEENHUIZEN K J, KISS A M, et al. Evolution of glass structure during femtosecond laser assisted crystallization of LaBGeO5 in glass[J]. J Non-Cryst Solids, 2021, 551: 120396.

    [56] [56] KOMATSU T, KOSHIBA K, HONMA T. Preferential growth orientation of laser-patterned LiNbO3 crystals in lithium niobium silicate glass[J]. J Solid State Chem, 2011, 184(2): 411-418.

    [57] [57] CAO J, MAZEROLLES L, LANCRY M, et al. Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure[J]. J Opt Soc Am B, 2017, 34(1): 160-168.

    [58] [58] ZHANG X C, HE X, LIU Q M, et al. Abnormal elemental redistribution in silicate glasses irradiated by ultrafast laser[J]. J Alloy Compd, 2017, 727: 444-448.

    [59] [59] CAO J, POUMELLEC B, MAZEROLLES L, et al. Nanoscale Phase separation in lithium niobium silicate glass by femtosecond laser irradiation[J]. J Am Ceram Soc, 2017, 100(1): 115-124.

    [60] [60] CAO J, POUMELLEC B, BRISSET F, et al. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing[J]. Opt Express, 2018, 26(6): 7460-7474.

    [61] [61] CAO J, LANCRY M, BRISSET F, et al. Femtosecond laser-induced crystallization in glasses: Growth dynamics for orientable nanostructure and nanocrystallization[J]. Cryst Growth Des, 2019, 19(4): 2189-2205.

    [62] [62] VEENHUIZEN K, MCANANY S, NOLAN D, et al. Fabrication of graded index single crystal in glass[J]. Sci Rep-UK, 2017, 7: 44327.

    [63] [63] WANG Y T, WEI S E, CICCONI M R, et al. Femtosecond laser direct writing in SiO2-Al2O3 binary glasses and thermal stability of Type II permanent modifications[J]. J Am Ceram Soc, 2020, 103(8): 4286-4294.

    [64] [64] HE X, LIU Q M, LANCRY M, et al. Space-selective control of functional crystals by femtosecond laser: A comparison between SrO-TiO2-SiO2 and Li2O-Nb2O5-SiO2 glasses[J]. Crystals, 2020, 10(11): 979.

    [65] [65] LOTAREV S V, LIPAT'EVA T O, LIPAT'EV A S, et al. Laser writing of crystalline structures in lithium-niobium-germanate glasses[J]. Glass Ceram, 2021, 77(11/12): 409-411.

    [66] [66] MUZI E, CAVILLON M, LANCRY M, et al. Towards a rationalization of ultrafast laser-induced crystallization in lithium niobium borosilicate glasses: The key role of the scanning speed[J]. Crystals, 2021, 11(3): 290.

    [67] [67] MUZI E, CAVILLON M, LANCRY M, et al. Polarization-oriented LiNbO3 nanocrystals by femtosecond laser irradiation in LiO2-Nb2O5- SiO2-B2O3 glasses[J]. Opt Mater Express, 2021, 11(4): 1313-1320.

    [68] [68] SAKAKIBARA N, ITO T, TERASHIMA K, et al. Dynamics of solvated electrons during femtosecond laser-induced plasma generation in water[J]. Phys Rev E, 2020, 102(5): 053207.

    [69] [69] KURITA T, SHIMOTSUMA Y, FUJIWARA M, et al. Direct writing of high-density nitrogen-vacancy centers inside diamond by femtosecond laser irradiation[J]. Appl Phys Lett, 2021, 118(21): 214001.

    [70] [70] LIPAT'EV A S, MOISEEV I A, LOTAREV S V, et al. Femtosecond laser assisted local crystallization of barium-titanate-silicate glass[J]. Glass Ceram, 2018, 74(11/12): 423-427.

    [71] [71] LIPATIEV A S, LIPATEVA T O, LOTAREV S V, et al. Direct laser writing of LaBGeO5 crystal-in-glass waveguide enabling frequency conversion[J]. Cryst Growth Des, 2017, 17(9): 4670-4675.

    [72] [72] LIPATIEV A S, MOISEEV I A, LOTAREV S V, et al. Growth of fresnoite single crystal tracks inside glass using femtosecond laser beam followed by heat treatment[J]. Cryst Growth Des, 2018, 18(11): 7183-7190.

    [73] [73] LOTAREV S V, LIPATIEV A S, LIPATEVA T O, et al. Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses[J]. J Non-Cryst Solids, 2019, 516: 1-8.

    [74] [74] DU X, ZHANG H, ZHOU S, et al. Femtosecond laser induced space-selective precipitation of a deep-ultraviolet nonlinear BaAlBO3F2 crystal in glass[J]. J Non-Cryst Solids, 2015, 420: 17-20.

    [75] [75] ZHONG M J, HAN Y M, LIU L P, et al. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz[J]. Appl Surf Sci, 2010, 257(4): 1185-1188.

    [76] [76] LIU Z, ZENG H D, JI X M, et al. Formation of Bi2ZnB2O7 nanocrystals in ZnO-Bi2O3-B2O3 glass induced by femtosecond laser[J]. J Am Ceram Soc, 2015, 98(2): 408-412.

    [77] [77] LOTAREV S V, LIPATIEV A S, LIPATEVA T O, et al. Ultrafast laser-induced crystallization of lead germanate glass[J]. Crystals, 2021, 11(2): 193.

    Tools

    Get Citation

    Copy Citation Text

    HE Xuan, LIU Qiming, ZHAO Lei. Femtosecond Laser Induced Controllable Crystallization of Second-Order Nonlinear Optical Crystals in Glass[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1022

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 30, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20211036

    Topics