Opto-Electronic Engineering, Volume. 50, Issue 1, 220118(2023)

Intravascular ultrasound image segmentation combining polar coordinate modeling and a neural network

Jingyu Liu1, Huaiyu Cai1、*, Wenyue Hao1, Tingtao Zuo2, Zhongwei Jia3, Yi Wang1, and Xiaodong Chen1
Author Affiliations
  • 1Key Laboratory of Optoelectronic Information Technology Ministry of Education, School of Precision Instrument & Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Lepu Medical Technology (Beijing) Co., Ltd., Beijing 102200, China
  • 3Southwestern Lu Hospital, Liaocheng, Shandong 252325, China
  • show less
    Figures & Tables(16)
    Ideal hypothesis diagrams. (a) The mask image that meets the ideal hypothesis; (b) The situation that does not meet the ideal hypothesis
    Modeling schematics. (a) Original image of IVUS; (b) Schematic diagram of modeling result. The intima contour and media contour are marked with red and green curves, respectively. The modeling results of the lumen area and plaque area are marked with red and green line segments, respectively
    The proposed dense distance of regression network
    Schematic diagram of the intersection of the true value and the predicted value patch area. Note: For the convenience of observation, the true value ray and the predicted value ray are staggered by a certain angle, and the two are actually on the same ray
    The graph of JM changing with the number of rays
    Visualization of segmentation results of different modeling methods
    Comparison of the visual effects of the segmentation results
    Linear regression analysis of key clinical parameters
    Bland-Altman analysis of key clinical parameters
    • Table 1. Information of the IVUS dataset

      View table
      View in Article

      Table 1. Information of the IVUS dataset

      患者标号1234
      图像数量21839318168
    • Table 2. The performance of the proposed method under different depths of backbone and different numbers of SEB modules

      View table
      View in Article

      Table 2. The performance of the proposed method under different depths of backbone and different numbers of SEB modules

      BackboneSEB numJMHD/mmPADTER
      MedLumPlaqueMedLumMedLum-
      ResNet1800.86300.85890.69350.23610.15010.10770.10380
      10.86580.85200.69470.22520.16030.10480.11740
      20.86590.86340.69790.21670.15550.10780.10390
      30.86550.85980.70160.22580.15130.11170.10380
      ResNet3400.88660.86740.73020.19060.14460.08490.09500
      10.88030.86060.71730.20800.14750.08910.10130
      20.87160.86100.70710.23570.15580.09790.10460
      30.88180.85740.71670.22270.15590.08330.10770
      ResNet5000.88040.86920.72210.18550.14620.09370.09670
      10.87380.86870.71310.22480.13850.09780.09460
      20.87600.86710.71520.22660.14450.09010.09900
      30.88050.87570.72110.21530.13510.09150.08790
      ResNet10100.88530.86650.72980.20140.13800.08600.09280
      10.89100.86460.73460.18730.15530.08160.10990
      20.89340.87380.74300.17610.13550.07940.10050
      30.89020.87250.73370.17750.13960.07450.08270
      ResNet15200.88520.86460.73020.20120.14120.08810.10360
      10.88450.87110.72560.20730.14020.08740.09580
      20.89740.87080.74240.18790.14810.07360.09620
      30.88490.86270.72550.21010.15450.08540.10880
    • Table 3. Experimental results with different loss functions

      View table
      View in Article

      Table 3. Experimental results with different loss functions

      Loss functionJMHD/mmPADTER
      MedLumPlaqueMedLumMedLum-
      Smoothl10.87320.86980.70470.21310.14360.09990.09300
      Ll+Lp0.88500.87570.73190.21450.13500.09120.09290
      Lm+Lp0.89040.86360.73130.19970.15090.07940.11160
      Ll+Lm0.88080.87360.71830.21720.14470.08940.08920
      IVUS Polar IoU Loss0.89340.87380.74300.17610.13550.07940.10050
    • Table 4. Experimental results with different modeling methods

      View table
      View in Article

      Table 4. Experimental results with different modeling methods

      建模方式LossJMHD/mmPADTER
      MedLumPlaqueMedLumMedLum-
      EllipseSmoothl10.82080.81240.61000.26330.17930.13990.14020.0767
      PCM-PK0.87320.86980.70470.21310.14360.09990.09300
    • Table 5. Performance comparison of different segmentation models

      View table
      View in Article

      Table 5. Performance comparison of different segmentation models

      BackboneJMHD/mmPADTER
      MedLumPlaqueMedLumMedLum-
      SegNet[30]-0.88560.86180.71480.53671.57830.09480.12450.2328
      UNet[31]-0.88570.88460.73000.47000.17760.09560.09500.1319
      Deeplabv3+[29]ResNet1010.90260.88860.75670.24270.13020.06770.07870.0390
      OursResNet1010.89340.87380.74300.17610.13550.07940.10050
    • Table 6. Results of linear regression analysis of key clinical parameters

      View table
      View in Article

      Table 6. Results of linear regression analysis of key clinical parameters

      斜率截距Pearson相关系数
      LCSA0.98250.23590.9427
      VCSA1.1259−1.39110.9626
      PCSA1.2016−1.50440.9432
    • Table 7. Results of Bland-Altman analysis of key clinical parameters

      View table
      View in Article

      Table 7. Results of Bland-Altman analysis of key clinical parameters

      均值均值偏移偏移程度/%离群值比例/%
      LCSA5.9898−0.1320−2.205.25
      VCSA15.8044−0.5628−3.566.59
      PCSA9.8146−0.4308−4.407.27
    Tools

    Get Citation

    Copy Citation Text

    Jingyu Liu, Huaiyu Cai, Wenyue Hao, Tingtao Zuo, Zhongwei Jia, Yi Wang, Xiaodong Chen. Intravascular ultrasound image segmentation combining polar coordinate modeling and a neural network[J]. Opto-Electronic Engineering, 2023, 50(1): 220118

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 8, 2022

    Accepted: Sep. 16, 2022

    Published Online: Feb. 27, 2023

    The Author Email: Cai Huaiyu (hycai@tju.edu.cn)

    DOI:10.12086/oee.2023.220118

    Topics