Acta Optica Sinica, Volume. 41, Issue 8, 0823010(2021)
Structural Color Technology for High Pixel Density Image Sensors
[1] Li J J, Du Y G, Zhang L H et al. Research progress on CMOS image sensors[J]. Laser & Optoelectronics Progress, 46, 45-52(2009).
[2] Ray F. The state-of-the-art of mainstream CMOS image sensors. [C]//Proceedings of the International Image Sensors Workshop, [S. l.]: [s. n.], 6-12(2015).
[3] Johnson W R, Wilson D W, Fink W et al. Snapshot hyperspectral imaging in ophthalmology[J]. Journal of Biomedical Optics, 12, 014036(2007).
[4] Cui X Q, Ren J, Tearney G J et al. Wavefront image sensor chip[J]. Optics Express, 18, 16685-16701(2010).
[5] Tokuda T, Yamada H, Sasagawa K et al. Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems[J]. IEEE Transactions on Biomedical Circuits and Systems, 3, 259-266(2009).
[6] Fu Q Y, Lin Q Y, Zhang W C et al. A high-speed CMOS image sensor for real-time vision chip[J]. Acta Optica Sinica, 31, 0828001(2011).
[7] Piazza L. Lummen T T A, Quiñonez E, et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field[J]. Nature Communications, 6, 6407(2015).
[8] Lule T, Benthien S, Keller H et al. Sensitivity of CMOS based imagers and scaling perspectives[J]. IEEE Transactions on Electron Devices, 47, 2110-2122(2000).
[9] Catrysse P B, Wandell B A. Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld[J]. Proceedings of SPIE, 5678, 592483(2005).
[10] Ahn J, Moon C R, Kim B et al. Advanced image sensor technology for pixel scaling down toward 1.0 μm (Invited)[C]//2008 IEEE International Electron Devices Meeting, December 15-17, 2008, San Francisco, CA, USA., 10500521(2008).
[11] Wuu S G, Wang C C, Hseih B C et al. A leading-edge 0.9 μ, 11777266(2010).
[12] Rhodes H, Agranov G, Hong C et al. CMOS imager technology shrinks and image performance[C]//2004 IEEE Workshop on Microelectronics and Electron Devices, April 16-16, 2004, Boise, ID, USA., 7-18(2004).
[13] Findlater K M, Renshaw D. Hurwitz J E D, et al. A CMOS image sensor with a double-junction active pixel[J]. IEEE Transactions on Electron Devices, 50, 32-42(2003).
[14] Mitra P, Robinson J E, Dell J M et al. -07-20(2010).
[15] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).
[16] Koenderink A F, Alù A, Polman A. Nanophotonics: shrinking light-based technology[J]. Science, 348, 516-521(2015).
[17] Yao K, Unni R, Zheng Y B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 8, 339-366(2019).
[18] Zhang Q M, Yu H, Barbiero M et al. Artificial neural networks enabled by nanophotonics[J]. Light: Science & Applications, 8, 319-332(2019).
[19] Krasnok A, Alu A. Active nanophotonics[J]. Proceedings of the IEEE, 108, 628-654(2020).
[20] Chen X, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).
[21] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).
[22] Lin R J, Su V C, Wang S et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).
[23] Zhao F, Chen X N, Wang D C. Metalens design and simulation for simultaneous focusing of orthogonal circularly polarized light[J]. Acta Optica Sinica, 40, 1024001(2020).
[24] Smith D R. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).
[25] Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths[J]. Science, 315, 47-49(2007).
[26] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nature Materials, 7, 435-441(2008).
[27] Zijlstra P. Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).
[28] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).
[29] Dai Q F, Ouyang M, Yuan W G et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 29, 1701918(2017).
[30] Lee H S, Yoon Y T, Lee S S et al. Color filter based on a subwavelength patterned metal grating[J]. Optics Express, 15, 15457-15463(2007).
[31] Kaplan A F, Xu T, Jay Guo L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 99, 143111(2011).
[32] Kumar K, Duan H, Hegde R S et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 7, 557-561(2012).
[33] Wen L, Chen Q, Hu X et al. Multifunctional silicon optoelectronics integrated with plasmonic scattering color[J]. ACS Nano, 10, 11076-11086(2016).
[34] Berzins J, Fasold S, Pertsch T et al. Submicrometer nanostructure-based RGB filters for CMOS image sensors[J]. ACS Photonics, 6, 1018-1025(2019).
[35] Verslegers L, Catrysse P B, Yu Z F et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 9, 235-238(2009).
[36] Verslegers L, Catrysse P B, Yu Z et al. Planar metallic nanoscale slit lenses for angle compensation[J]. Applied Physics Letters, 95, 071112(2009).
[37] Chen Q. Cumming D R S. Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film[J]. Optics Express, 18, 14788-14793(2010).
[38] Ishi T, Fujikata J, Makita K et al. Si nano-photodiode with a surface plasmon antenna[J]. Japanese Journal of Applied Physics, 44, L364-L366(2005).
[39] Tang L, Latif S. Miller D A B. Plasmonic device in silicon CMOS[J]. Electronics Letters, 45, 706-708(2009).
[40] Zheng B Y, Wang Y M, Nordlander P et al. Color-selective and CMOS-compatible photodetection based on aluminum plasmonics[J]. Advanced Materials, 26, 6318-6323(2014).
[41] Catrysse P B, Verslegers L, Fesenmaier C C et al. Nanophotonics for solid-state imaging. [C]//Imaging Systems, Tucson, Arizona. Washington, D.C.: OSA, June 7-8, 2010, Stanford: Stanford University, ITuA3(2010).
[42] Cho E H, Kim H S, Cheong B H et al. Two-dimensional photonic crystal color filter development[J]. Optics Express, 17, 8621-8629(2009).
[43] Frey L, Parrein P, Raby J et al. Color filters including infrared cut-off integrated on CMOS image sensor[J]. Optics Express, 19, 13073-13080(2011).
[44] Yokogawa S, Burgos S P, Atwater H A. Plasmonic color filters for CMOS image sensor applications[J]. Nano Letters, 12, 4349-4354(2012).
[45] Nishiwaki S, Nakamura T, Hiramoto M et al. Efficient colour splitters for high-pixel-density image sensors[J]. Nature Photonics, 7, 240-246(2013).
[46] Chen Q, Hu X, Wen L et al. Nanophotonic image sensors[J]. Small, 12, 4922-4935(2016).
[47] Xu T, Shi H F, Wu Y K et al. Structural colors: from plasmonic to carbon nanostructures[J]. Small, 7, 3128-3136(2011).
[48] Yu Y, Wen L, Song S C et al. Transmissive/Reflective structural color filters: theory and applications[J]. Journal of Nanomaterials, 2014, 212637(2014).
[49] Kristensen A. Yang J K W, Bozhevolnyi S I, et al. Plasmonic colour generation[J]. Nature Reviews Materials, 2, 16088(2016).
[50] Ji C G, Lee K T, Xu T et al. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers[J]. Advanced Optical Materials, 5, 1700368(2017).
[51] Wang J X, Fan Q B, Zhang H et al. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 44, 23-33(2017).
[52] El Gamal A, Eltoukhy H. CMOS image sensors[J]. IEEE Circuits and Devices Magazine, 21, 6-20(2005).
[53] Theuwissen A J P. CMOS image sensors: state-of-the-art[J]. Solid-State Electronics, 52, 1401-1406(2008).
[54] Ramanath R, Snyder W E, Bilbro G L et al. Demosaicking methods for Bayer color arrays[J]. Journal of Electronic Imaging, 11, 306-316(2002).
[55] Adams J, Parulski K, Spaulding K. Color processing in digital cameras[J]. IEEE Micro, 18, 20-30(1998).
[57] Taguchi H, Enokido M. Technology of color filter materials for image sensor. [C]//2011 International Image Sensor Workshop, [S. l.]: [s. n.], 34-37(2011).
[58] Gather M, Köhnen A, Falcou A et al. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography[J]. Advanced Functional Materials, 17, 191-200(2007).
[59] Catrysse P, Wandell B, El Gamal A. An integrated color pixel in 0.18 μm CMOS technology[C]//International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), December 2-5, 2001, Washington, DC, USA., 4, 4.
[60] Catrysse P B, Wandell B A. Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology[J]. Journal of the Optical Society of America A, 20, 2293-2306(2003).
[61] Yang W H, Xiao S M, Song Q H et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 11, 1864(2020).
[62] Yoon Y T, Lee S S. Transmission type color filter incorporating a silver film based etalon[J]. Optics Express, 18, 5344-5349(2010).
[63] Li Z Y, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2, 183-188(2015).
[64] Chen Y, Duan X, Matuschek M et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Letters, 17, 5555-5560(2017).
[65] Sakat E, Vincent G, Ghenuche P et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Optics Letters, 36, 3054-3056(2011).
[66] Niraula M, Yoon J W, Magnusson R. Single-layer optical bandpass filter technology[J]. Optics Letters, 40, 5062-5065(2015).
[67] Quaranta G, Basset G. Martin O J F, et al. Recent advances in resonant waveguide gratings[J]. Laser & Photonics Reviews, 12, 1800017(2018).
[68] Gétin S, Désières Y, Marie M et al. Nanoplasmonic filters for image sensors[J]. Proceedings of SPIE, 7249, 724904(2009).
[69] Shrestha V R, Lee S S, Kim E S et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 14, 6672-6678(2014).
[70] Heydari E, Sperling J R, Neale S L et al. Plasmonic color filters as dual-state nanopixels for high-density microimage encoding[J]. Advanced Functional Materials, 27, 1701866(2017).
[71] Miyamichi A, Ono A, Kamehama H et al. Multi-band plasmonic color filters for visible-to-near-infrared image sensors[J]. Optics Express, 26, 25178-25187(2018).
[72] Mehta A, Rumpf R C, Roth Z et al. Nanofabrication of a space-variant optical transmission filter[J]. Optics Letters, 31, 2903-2905(2006).
[73] Williams C. Gordon G S D, Wilkinson T D, et al. Single-step fabrication of multispectral filter arrays using grayscale lithography and metal-insulator-metal geometry. [C]//Conference on Lasers and Electro-Optics, San Jose, California,May 13-18, 2018, Washington, D.C.: OSA, STh1I, 2(2018).
[74] Walls K, Chen Q, Grant J et al. Narrowband multispectral filter set for visible band[J]. Optics Express, 20, 21917-21923(2012).
[75] Song S C, Sun F H, Chen Q et al. Narrow-linewidth and high-transmission terahertz bandpass filtering by metallic gratings[J]. IEEE Transactions on Terahertz Science and Technology, 5, 131-136(2015).
[76] Chen Q, Chitnis D, Walls K et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technology Letters, 24, 197-199(2012).
[77] Przybilla F, Degiron A, Genet C et al. Efficiency and finite size effects in enhanced transmission through subwavelength apertures[J]. Optics Express, 16, 9571-9579(2008).
[78] Yu Y, Chen Q, Wen L et al. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters[J]. Optics Express, 23, 21994-22003(2015).
[79] Dammann H. Color separation gratings[J]. Applied Optics, 17, 2273-2279(1978).
[80] Palmer E W, Hutley M C, Franks A et al. Diffraction gratings (manufacture)[J]. Reports on Progress in Physics, 38, 975-1048(1975).
[81] Farn M W, Stern M B, Veldkamp W B et al. Color separation by use of binary optics[J]. Optics Letters, 18, 1214-1216(1993).
[82] Farn M W, Knowlden R E, Stern M B et al. Color separation gratings. [C]//NASA Conference Publication. Washington, DC: NASA, 409-421(1993).
[83] Layet B, Cormack I G, Taghizadeh M R. Stripe color separation with diffractive optics[J]. Applied Optics, 38, 7193-7201(1999).
[84] Miyata M, Nakajima M, Hashimoto T. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces[J]. ACS Photonics, 6, 1442-1450(2019).
[85] Zhang D G, Wang P, Jiao X J et al. Progress in surface plasmon subwavelength optics[J]. Physics, 34, 508-512(2005).
[86] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[87] Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 29, 287-324(2009).
[88] Keshavarz Hedayati M, Elbahri M. Review of metasurface plasmonic structural color[J]. Plasmonics, 12, 1463-1479(2017).
[89] and other metals[J]. Faraday M. The Bakerian lecture: experimental relations of gold, to light. Philosophical Transactions of the Royal Society of London, 147, 145-181(1857).
[90] Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).
[91] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 332, 218-220(2011).
[92] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).
[93] Yoon Y T, Lee S S, Lee B S. Visible filter integrated with an image sensor fabricated by a 90-nm standard CMOS process[C]//2010 23rd Annual Meeting of the IEEE Photonics Society, November 7-11, 2010, Denver, CO, USA., 630-631(2010).
[94] Chen Q, Das D, Chitnis D et al. A CMOS image sensor integrated with plasmonic colour filters[J]. Plasmonics, 7, 695-699(2012).
[95] Drezet A, Koller D, Hohenau A et al. Plasmonic crystal demultiplexer and multiports[J]. Nano Letters, 7, 1697-1700(2007).
[96] Lezec H J, Degiron A, Devaux E et al. Beaming light from a subwavelength aperture[J]. Science, 297, 820-822(2002).
[97] Aouani H, Mahboub O, Devaux E et al. Plasmonic antennas for directional sorting of fluorescence emission[J]. Nano Letters, 11, 2400-2406(2011).
[98] Laux E, Genet C, Skauli T et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2, 161-164(2008).
[99] Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 4, 312-315(2010).
[100] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[101] Shegai T, Chen S. Miljkovi V D, et al. A bimetallic nanoantenna for directional colour routing[J]. Nature Communications, 2, 481(2011).
[102] Shegai T, Johansson P, Langhammer C et al. Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas[J]. Nano Letters, 12, 2464-2469(2012).
[103] Shibanuma T, Matsui T, Roschuk T et al. Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers[J]. ACS Photonics, 4, 489-494(2017).
[104] Artar A, Yanik A A, Altug H. Directional double Fano resonances in plasmonic hetero-oligomers[J]. Nano Letters, 11, 3694-3700(2011).
[105] Guo R, Decker M, Setzpfandt F et al. Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals[J]. Nano Letters, 15, 3324-3328(2015).
[106] Barelli M, Mazzanti A, Giordano M C et al. Color routing via cross-polarized detuned plasmonic nanoantennas in large-area metasurfaces[J]. Nano Letters, 20, 4121-4128(2020).
[107] Vercruysse D, Sonnefraud Y, Verellen N et al. Unidirectional side scattering of light by a single-element nanoantenna[J]. Nano Letters, 13, 3843-3849(2013).
[108] Zhuo X, Yip H K, Cui X et al[J]. Colour routing with single silver nanorods Light: Science & Applications, 8, 39.
[109] Shakoor A, Cheah B C, Hao D et al. Plasmonic sensor monolithically integrated with a CMOS photodiode[J]. ACS Photonics, 3, 1926-1933(2016).
[110] Shah Y D, Shah Y D. Connolly P W R, et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters[J]. Optica, 7, 632-639(2020).
[111] Ni X J, Wong Z J, Mrejen M et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 349, 1310-1314(2015).
[112] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).
[113] Yan C, Yang K Y. Martin O J F. Fano-resonance-assisted metasurface for color routing[J]. Light: Science & Applications, 6, e17017(2017).
[114] Meng Y, Hu F, Liu Z et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express, 27, 16425-16439(2019).
[115] Pedrotti F L, Pedrotti L M, Pedrotti L S[M]. Introduction to optics(2017).
[116] Fan Z B, Shao Z K, Xie M Y et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 10, 014005(2018).
[117] Chen Q. Effect of the number of zones in a one-dimensional plasmonic zone plate lens: simulation and experiment[J]. Plasmonics, 6, 75-82(2011).
[118] Fu Y H, Kuznetsov A I, Miroshnichenko A E et al[J]. Directional visible light scattering by silicon nanoparticles Nature Communications, 4, 1527.
[119] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).
[120] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).
[121] Berry M V. The adiabatic phase and Pancharatnam's phase for polarized light[J]. Journal of Modern Optics, 34, 1401-1407(1987).
[122] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).
[123] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).
[124] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).
[125] Wang S, Wu P C, Su V C et al[J]. Broadband achromatic optical metasurface devices Nature Communications, 8, 187.
[126] Faraji-Dana M, Arbabi E, Arbabi A et al[J]. Compact folded metasurface spectrometer Nature Communications, 9, 4196.
[127] Wang B, Dong F L, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016).
[128] Guo L H, Hu Z L, Wan R Q et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing[J]. Nanophotonics, 8, 171-180(2018).
[129] Lin D, Holsteen A L, Maguid E et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Letters, 16, 7671-7676(2016).
[130] Zang X F, Dong F L, Yue F Y et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 30, 1707499(2018).
[131] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).
[132] Zhou Y, Kravchenko I I, Wang H et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 18, 7529-7537(2018).
[133] Pile D. Graphene versus metal plasmons[J]. Nature Photonics, 7, 420(2013).
[134] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 331, 290-291(2011).
[135] Huang C J, Chen C, Wang S W. An introduction to performance of optical nnano-antennas[J]. Laser & Optoelectronics Progress, 49, 060005(2012).
[136] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).
[137] Schuller J, Brongersma M. General properties of dielectric optical antennas[J]. Optics Express, 17, 24084-24095(2009).
[138] Palanchoke U, Boutami S, Gidon S. Spectral sorting of visible light using dielectric gratings[J]. Optics Express, 25, 33389-33399(2017).
[139] Li J Q, Verellen N, Vercruysse D et al. All-dielectric antenna wavelength router with bidirectional scattering of visible light[J]. Nano Letters, 16, 4396-4403(2016).
[140] Yun S, Nam S, Roh S et al. -01-02[P]. image pickup apparatus including the image sensor: US9860492.(2018).
[141] Sohn J. Color splitter. -09-19[P]. method of manufacturing the same, image sensor including the same: US9766467.(2017).
[142] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015).
[143] Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).
[144] Zhao H J. Reverse design of resonance-domain rectangular-groove dielectric surface-relief gratings[J]. High Power Laser and Particle Beams, 25, 879-884(2013).
[145] Camayd-Muñoz P, Roberts G, Debbas M et al. Inverse-designed spectrum splitters for color imaging. [C]//Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, AM4K, 3(2019).
[146] Suzuki Y, Ozeki Y, Yoshino T et al. Proposal of micro-trichroic structures for high-sensitivity color image sensors[J]. Japanese Journal of Applied Physics, 50, 042201(2011).
[147] Sell D, Yang J J, Doshay S et al. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities[J]. Advanced Optical Materials, 5, 1700645(2017).
Get Citation
Copy Citation Text
Qin Chen, Long Wen, Xianguang Yang, Baojun Li. Structural Color Technology for High Pixel Density Image Sensors[J]. Acta Optica Sinica, 2021, 41(8): 0823010
Category: Optical Devices
Received: Jun. 29, 2020
Accepted: Jul. 31, 2020
Published Online: Apr. 20, 2021
The Author Email: Chen Qin (chenqin2018@jnu.edu.cn)