Optics and Precision Engineering, Volume. 32, Issue 13, 2052(2024)

Quantitative detection of sintered mixed materials using LIBS under different delay conditions

Yunpeng QIN... Mingda SUI, Zihao WEI, Shilong XUE, Yuan LU, Ye TIAN and Jinjia GUO* |Show fewer author(s)
Author Affiliations
  • Faculty of Information Science and Engineering, Ocean University of China, Qingdao266100, China
  • show less
    References(28)

    [1] C H YAN, Z M WANG, F Q RUAN et al. Classification of iron ore based on acidity and alkalinity by laser induced breakdown spectroscopy coupled with N-nearest neighbours (N3. Analytical Methods, 8, 6216-6221(2016).

    [2] P CHATTOPADHYAY, P DATTA, A K JOUHARI. Analysis of sintered products of iron ore fines by flame atomic absorption spectrometry using a matrix modifier. Fresenius' Journal of Analytical Chemistry, 369, 407-411(2001).

    [3] B G GONG, C TIAN, Z XIONG et al. Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in Inner Mongolia, China. International Journal of Coal Geology, 166, 96-107(2016).

    [4] W S CHEN, Z LI, F L HU et al. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst. Applied Surface Science, 439, 75-81(2018).

    [5] [5] 赵龙. 应用中子活化技术检测烧结矿成分试验[J]. 现代矿业, 2018, 34(6): 249-251. doi: 10.3969/j.issn.1674-6082.2018.06.072ZHAOL. Experiment on the sinter composition detection by neutron activation technology[J]. Modern Mining, 2018, 34(6): 249-251.(in Chinese). doi: 10.3969/j.issn.1674-6082.2018.06.072

    [6] P K ABRAITIS, R A D PATTRICK, G H KELSALL et al. Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems. Mineralogical Magazine, 68, 343-351(2004).

    [7] C A SHAND, R WENDLER. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31-42(2014).

    [8] D A CREMERS, R C CHINNI. Laser-induced breakdown spectroscopy—capabilities and limitations. Applied Spectroscopy Reviews, 44, 457-506(2009).

    [9] F J FORTES, J J LASERNA. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochimica Acta- Part B: Atomic Spectroscopy, 65, 975-990(2010).

    [10] V C COSTA, F A C AMORIM, D V DE BABOS et al. Direct determination of Ca, K, Mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS). Food Chemistry, 273, 91-98(2019).

    [11] [11] 何洪钰, 高智星, 何运, 等. 激光诱导等离子体光谱直接探测气溶胶中的锶元素[J]. 光学 精密工程, 2023, 31(19): 2827-2835. doi: 10.37188/ope.20233119.2827HEH Y, GAOZH X, HEY, et al. Direct monitoring of strontium in aerosols by laser-induced plasma spectroscopy[J]. Optics and Precision Engineering, 2023, 31(19): 2827-2835.(in Chinese). doi: 10.37188/ope.20233119.2827

    [12] H S TANG, T L ZHANG, X F YANG et al. Classification of different types of slag samples by laser-induced breakdown spectroscopy (LIBS) coupled with random forest based on variable importance (VIRF). Analytical Methods, 7, 9171-9176(2015).

    [13] F Q RUAN, J QI, C H YAN et al. Quantitative detection of harmful elements in alloy steel by LIBS technique and sequential backward selection-random forest (SBS-RF). Journal of Analytical Atomic Spectrometry, 32, 2194-2199(2017).

    [14] S MILLAR, C GOTTLIEB, T GÜNTHER et al. Chlorine determination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS)–A review and validation. Spectrochimica Acta Part B: Atomic Spectroscopy, 147, 1-8(2018).

    [15] J H YANG, X M LI, H L LU et al. An LIBS quantitative analysis method for alloy steel at high temperature based on transfer learning. Journal of Analytical Atomic Spectrometry, 33, 1184-1195(2018).

    [16] K LIU, D TIAN, C LI et al. A review of laser-induced breakdown spectroscopy for plastic analysis. TrAC Trends in Analytical Chemistry, 110, 327-334(2019).

    [17] K LIU, D TIAN, H X WANG et al. Rapid classification of plastics by laser-induced breakdown spectroscopy (LIBS) coupled with partial least squares discrimination analysis based on variable importance (VI-PLS-DA). Analytical Methods, 11, 1174-1179(2019).

    [18] G YANG, X HAN, C H WANG et al. The basicity analysis of sintered ore using laser-induced breakdown spectroscopy (LIBS) combined with random forest regression (RFR). Analytical Methods, 9, 5365-5370(2017).

    [19] Y DING, F YAN, G YANG et al. Quantitative analysis of sinters using laser-induced breakdown spectroscopy (LIBS) coupled with kernel-based extreme learning machine (K-ELM). Analytical Methods, 10, 1074-1079(2018).

    [20] [20] 高源, 孙兰香, 李翔宇, 等. 基于LIBS在线分析烧结矿混合料成分及校正水分影响[J]. 中国激光, 2023, 50(19): 3788/CJL221270. doi: 10.3788/CJL221270GAOY, SUNL X, LIX Y, et al. On-line analysis of sinter mixture composition and correction of moisture influence based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(19): 3788/CJL221270.(in Chinese). doi: 10.3788/CJL221270

    [21] S Y ZHAO, W R SONG, Y C ZHAO et al. In-situ measurement method of material ratio and chemical uniformity in sintering–pelleting operation using laser-induced breakdown spectroscopy and partial least squares regression. Microchemical Journal, 183, 107986(2022).

    [22] W Y ZHAO, C LI, C L YAN et al. Interpretable deep learning-assisted laser-induced breakdown spectroscopy for brand classification of iron ores. Analytica Chimica Acta, 1166, 338574(2021).

    [23] [23] 袁梦甜, 陈光辉, 程敏佳, 等. 不同离焦量延时时间参数对激光诱导击穿光谱特征及自吸收效应的影响[J]. 冶金分析, 2020, 40(12): 51-58. doi: 10.13228/j.boyuan.issn1000-7571.011212YUANM T, CHENG H, CHENGM J, et al. The influence of different defocusing and delay time parameters on the characteristics of laser-induced breakdown spectroscopy and the effect of self-absorption[J]. Metallurgical Analysis, 2020, 40(12): 51-58.(in Chinese). doi: 10.13228/j.boyuan.issn1000-7571.011212

    [24] J R SCOTT, A J EFFENBERGER, J J HATCH. Influence of atmospheric pressure and composition on LIBS. Springer Series in Optical Sciences, 91-116(2014).

    [25] D WU, L Y SUN, J M LIU et al. Parameter optimization of the spectral emission of laser-induced tungsten plasma for tokamak wall diagnosis at different pressures. Journal of Analytical Atomic Spectrometry, 36, 1159-1169(2021).

    [26] R C WIENS, A J BLAZON-BROWN, N MELIKECHI et al. Improving ChemCam LIBS long-distance elemental compositions using empirical abundance trends. Spectrochimica Acta Part B: Atomic Spectroscopy, 182, 106247(2021).

    [27] C GAUTIER, P FICHET, D MENUT et al. Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 210-219(2006).

    [28] C GAUTIER, P FICHET, D MENUT et al. Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 792-804(2005).

    Tools

    Get Citation

    Copy Citation Text

    Yunpeng QIN, Mingda SUI, Zihao WEI, Shilong XUE, Yuan LU, Ye TIAN, Jinjia GUO. Quantitative detection of sintered mixed materials using LIBS under different delay conditions[J]. Optics and Precision Engineering, 2024, 32(13): 2052

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2024

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: GUO Jinjia (opticsc@ouc.edu.cn)

    DOI:10.37188/OPE.20243213.2052

    Topics