Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0106002(2024)

Distributed Fiber Optic Sensing Based on Optical Frequency Domain Reflectometry and Its Application Progress (Invited)

Yiping Wang1,2,3, Huajian Zhong1,2, Rongyi Shan1,2, Wenfa Liang1,2, Zhenwei Peng1,2, Yanjie Meng1,2, Changrui Liao1,2, and Cailing Fu1,2、*
Author Affiliations
  • 1Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 3Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen 518107, Guangdong , China
  • show less
    References(121)

    [1] Li Y, Yuan Z Y, Chen L W A et al. From air quality sensors to sensor networks: things we need to learn[J]. Sensors and Actuators B: Chemical, 351, 130958(2022).

    [2] Liu W K, Zhou W S, Li H. Bridge scour estimation using unconstrained distributed fiber optic sensors[J]. Journal of Civil Structural Health Monitoring, 12, 775-784(2022).

    [3] Tsuda H, Lee J R. Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system[J]. Composites Science and Technology, 67, 1353-1361(2007).

    [4] Wu Q, Wang R, Yu F M et al. Application of an optical fiber sensor for nonlinear ultrasonic evaluation of fatigue crack[J]. IEEE Sensors Journal, 19, 4992-4999(2019).

    [5] Wada D C, Igawa H, Tamayama M et al. Flight demonstration of aircraft wing monitoring using optical fiber distributed sensing system[J]. Smart Materials and Structures, 28, 055007(2019).

    [6] Wang J, Tang R X, Chen J J et al. Study of straight-line-type Sagnac optical fiber acoustic sensing system[J]. Photonics, 10, 83(2023).

    [7] Beugnot J C, Tur M, Mafang S F et al. Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing[J]. Optics Express, 19, 7381-7397(2011).

    [8] Wang M, Wu H, Tang M et al. Few-mode fiber based Raman distributed temperature sensing[J]. Optics Express, 25, 4907-4916(2017).

    [9] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 15, 2112-2115(1976).

    [10] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [11] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).

    [12] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).

    [13] Igawa H, Murayama H, Kasai T et al. Measurements of strain distributions with a long gauge FBG sensor using optical frequency domain reflectometry[J]. Proceedings of SPIE, 5855, 547-550(2005).

    [14] Cui J W, Zhao S Y, Yang D et al. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems[J]. Applied Optics, 57, 1424-1431(2018).

    [15] Kreger S T, Gifford D K, Froggatt M E et al. High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry[C], ThE42(2006).

    [17] Gui X, Li Z Y, Wang F et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 25, 28112-28122(2017).

    [18] Butter C D, Hocker G B. Fiber optics strain gauge[J]. Applied Optics, 17, 2867-2869(1978).

    [19] Chen D, Liu Q W, He Z Y. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution[J]. Optics Express, 26, 16138-16146(2018).

    [20] Chen D, Liu Q W, Fan X Y et al. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 35, 2037-2043(2017).

    [21] Dong Y K, Chen X, Liu E H et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 55, 7810-7815(2016).

    [22] Ayhan S, Scherr S, Bhutani A et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 3290-3301(2016).

    [23] Takada K. High-resolution OFDR with incorporated fiber-optic frequency encoder[J]. IEEE Photonics Technology Letters, 4, 1069-1072(1992).

    [24] Iiyama K, Yasuda M, Takamiya S. Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer[J]. IEICE Transactions on Electronics, 89, 823-829(2006).

    [25] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 16, 13139-13149(2008).

    [26] Feng B W, Liu K, Liu T G et al. Improving OFDR spatial resolution by reducing external clock sampling error[J]. Optics Communications, 363, 74-79(2016).

    [27] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630-7634(2005).

    [28] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Applied Optics, 46, 2394-2400(2007).

    [29] Yuksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 17, 5845-5851(2009).

    [30] Ding Z Y, Liu T G, Meng Z et al. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 83, 066110(2012).

    [31] Sagiv O Y, Arbel D, Eyal A. Correcting for spatial-resolution degradation mechanisms in OFDR via inline auxiliary points[J]. Optics Express, 20, 27465-27472(2012).

    [32] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).

    [33] Xing J J, Zhang Y, Wang F et al. A method based on time-scale factor for correcting the nonlinear frequency sweeping in an OFDR system[J]. IEEE Photonics Journal, 11, 7101808(2019).

    [34] Badar M, Lu P, Buric M et al. Integrated auxiliary interferometer for self-correction of nonlinear tuning in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 38, 6097-6103(2020).

    [35] Guo Z, Han G C, Yan J Z et al. Ultimate spatial resolution realisation in optical frequency domain reflectometry with equal frequency resampling[J]. Sensors, 21, 4632(2021).

    [36] Wang F, Sun Y, Chen Q et al. Enhancing the effect of nonlinear frequency sweep correction in OFDR with improved reference frequency[J]. Journal of Lightwave Technology, 40, 269-276(2022).

    [37] Zhong H J, Fu C L, Li P F et al. Distributed high-temperature sensing based on optical frequency domain reflectometry with a standard single-mode fiber[J]. Optics Letters, 47, 882-885(2022).

    [38] Yin G L, Jiang R, Zhu T. In-fiber auxiliary interferometer to compensate laser nonlinear tuning in simplified OFDR[J]. Journal of Lightwave Technology, 40, 837-843(2022).

    [39] Zhong H J, Fu C L, Wang L J et al. High-spatial-resolution OFDR with single interferometer using self-compensation method[J]. Optics and Lasers in Engineering, 161, 107341(2023).

    [40] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 26, 3287-3294(2008).

    [41] Xiong J, Wang Z N, Jiang J L et al. High sensitivity and large measurable range distributed acoustic sensing with Rayleigh-enhanced fiber[J]. Optics Letters, 46, 2569-2572(2021).

    [42] Gorju G, Jucha A, Jain A et al. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control[J]. Optics Letters, 32, 484-486(2007).

    [43] Qin J, Zhang L, Xie W L et al. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source[J]. Optics Express, 27, 19359-19368(2019).

    [44] Feng Y X, Xie W L, Meng Y X et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology, 38, 6227-6236(2020).

    [45] Xie W L, Meng Y X, Feng Y X et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Optics Express, 29, 604-614(2021).

    [46] Wei F, Lu B, Wang J et al. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking[J]. Optics Express, 23, 4970-4980(2015).

    [47] Schneider G J, Murakowski J A, Schuetz C A et al. Radiofrequency signal-generation system with over seven octaves of continuous tuning[J]. Nature Photonics, 7, 118-122(2013).

    [48] Wang B, Fan X Y, Wang S et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 25, 3514-3524(2017).

    [49] Zhong H J, Fu C L, Li P F et al. Ultra-linear broadband optical frequency sweep for a long-range and centimeter-spatial-resolution OFDR[J]. Optics Letters, 48, 4540-4543(2023).

    [50] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Optics Letters, 32, 3227-3229(2007).

    [51] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry[J]. IEEE Journal of Quantum Electronics, 45, 594-602(2009).

    [52] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 30, 1015-1024(2012).

    [53] Zhang Z P, Fan X Y, Wu M S et al. Phase-noise-compensated OFDR realized using hardware-adaptive algorithm for real-time processing[J]. Journal of Lightwave Technology, 37, 2634-2640(2019).

    [54] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).

    [55] Du Y, Liu T G, Ding Z Y et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 6, 7902811(2014).

    [56] Zou C, Lin C F, Mou T L et al. Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method[J]. Optics Letters, 47, 5373-5376(2022).

    [57] Healey P. Fading in heterodyne OTDR[J]. Electronics Letters, 20, 30-32(1984).

    [58] Wang C H, Liu K, Ding Z Y et al. High sensitivity distributed static strain sensing based on differential relative phase in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 38, 5825-5836(2020).

    [59] Zhao S Y, Cui J W, Wu Z J et al. Distributed fiber deformation measurement by high-accuracy phase detection in OFDR scheme[J]. Journal of Lightwave Technology, 39, 4101-4108(2021).

    [60] Luo J W, Bai J, He P et al. Axial strain calculation using a low-pass digital differentiator in ultrasound elastography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 1119-1127(2004).

    [61] Li H, Liu Q W, Chen D et al. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression[J]. Optics Letters, 45, 563-566(2020).

    [62] Feng W, Wang M F, Jia H L et al. High precision phase-OFDR scheme based on fading noise suppression[J]. Journal of Lightwave Technology, 40, 900-908(2022).

    [63] Aitkulov A, Marcon L, Chiuso A et al. Machine learning estimation of the phase at the fading points of an OFDR-based distributed sensor[J]. Sensors, 23, 262(2022).

    [64] Feng Y X, Xie W L, Meng Y X et al. Multicore fiber enabled fading suppression in φ-OFDR based high resolution quantitative DVS[J]. IEEE Photonics Technology Letters, 34, 1026-1029(2022).

    [65] Meng Y J, Fu C L, Chen L et al. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 47, 6289-6292(2022).

    [66] Parent F, Gérard M, Monet F et al. Intra-arterial image guidance with optical frequency domain reflectometry shape sensing[J]. IEEE Transactions on Medical Imaging, 38, 482-492(2019).

    [67] Katzschmann R K, Thieffry M, Goury O et al. Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer[C], 717-724(2019).

    [68] Bai H, Li S, Barreiros J et al. Stretchable distributed fiber-optic sensors[J]. Science, 370, 848-852(2020).

    [69] Wolf A, Dostovalov A, Bronnikov K et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 27, 13978-13990(2019).

    [70] Zhao Z Y, Soto M A, Tang M et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 24, 25211-25223(2016).

    [71] Szostkiewicz Ł, Soto M A, Yang Z S et al. High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers[J]. Optics Express, 27, 20763-20773(2019).

    [72] Parent F, Loranger S, Mandal K K et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers[J]. Biomedical Optics Express, 8, 2210-2221(2017).

    [73] Duncan R G, Raum M T. Characterization of a fiber-optic shape and position sensor[J]. Proceedings of SPIE, 6167, 616704(2006).

    [74] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [75] Yin G L, Lu L, Zhou L et al. Distributed directional torsion sensing based on an optical frequency domain reflectometer and a helical multicore fiber[J]. Optics Express, 28, 16140-16150(2020).

    [76] Yin G L, Xu Z, Ma J M et al. Simultaneous measurement of bending and torsion in optical fiber shape sensor[J]. Journal of Lightwave Technology, 41, 1851-1857(2023).

    [77] Yin G L, Xu Z, Jiang R et al. Optical fiber distributed three-dimensional shape sensing technology based on optical frequency-domain reflectometer[J]. Acta Optica Sinica, 42, 0106002(2022).

    [78] Yin G L, Xu Z, Zhu T. Distributed real-time monitoring of residual stress during packaging process of optical fiber shape sensor[J]. Acta Optica Sinica, 42, 1606002(2022).

    [79] Chen Z, Wang C H, Ding Z Y et al. Demonstration of large curvature radius shape sensing using optical frequency domain reflectometry in multi-core fibers[J]. IEEE Photonics Journal, 13, 6800809(2021).

    [80] Li S, Hua P D, Ding Z Y et al. Reconstruction error model of distributed shape sensing based on the reentered frame in OFDR[J]. Optics Express, 30, 43255-43270(2022).

    [81] Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces[P].

    [82] Meng Y J, Fu C L, Du C et al. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer[J]. Journal of Lightwave Technology, 39, 6624-6630(2021).

    [83] Beisenova A, Issatayeva A, Iordachita I et al. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing[J]. Optics Express, 27, 22074-22087(2019).

    [84] Fu C L, Meng Y J, Chen L et al. High-spatial-resolution φ-OFDR shape sensor based on multicore optical fiber with femtosecond-laser-induced permanent scatter arrays[J]. Optics Letters, 48, 3219-3222(2023).

    [85] Zhong H J, Liu X Y, Fu C L et al. Quasi-distributed temperature and strain sensors based on series-integrated fiber Bragg gratings[J]. Nanomaterials, 12, 1540(2022).

    [86] Feng K P, Cui J W, Jiang D et al. Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum[J]. Optics Letters, 43, 3293-3296(2018).

    [87] Luo M M, Liu J F, Tang C J et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 27, 35823-35829(2019).

    [88] Zhao S Y, Cui J W, Wu Z J et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 124, 105824(2020).

    [89] Qu S, Qin Z G, Xu Y P et al. High spatial resolution investigation of OFDR based on image denoising methods[J]. IEEE Sensors Journal, 21, 18871-18876(2021).

    [90] Li P F, Fu C L, Du B et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 39, 6334-6339(2021).

    [91] Qu S, Qin Z G, Xu Y P et al. Improvement of strain measurement range via image processing methods in OFDR system[J]. Journal of Lightwave Technology, 39, 6340-6347(2021).

    [92] Qu S, Wang Z Q, Qin Z G et al. Internet of things infrastructure based on fast, high spatial resolution, and wide measurement range distributed optic-fiber sensors[J]. IEEE Internet of Things Journal, 9, 2882-2889(2022).

    [93] Zhao S Y, Cui J W, Suo L J et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 37, 3721-3727(2019).

    [94] Dang H, Ma B, Gao C et al. Performance enhancement method of optical frequency domain reflection distributed fiber sensing based on Kalman prediction[J]. Acta Optica Sinica, 44, 0106002(2024).

    [95] Du C, Fu C L, Li P F et al. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure[J]. Journal of Lightwave Technology, 41, 1566-1570(2023).

    [96] Laarossi I, Ruiz-Lombera R, Quintela M A et al. Ultrahigh temperature Raman-based distributed optical fiber sensor with gold-coated fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 296-301(2017).

    [97] Xu P B, Ba D X, He W M et al. Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 ℃ by using an annealed gold-coated fiber[J]. Optics Express, 26, 29724-29734(2018).

    [98] Rizzolo S, Marin E, Morana A et al. Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments[J]. Journal of Lightwave Technology, 34, 4460-4465(2016).

    [99] Chen C, Gao S, Chen L et al. Distributed high temperature monitoring of SMF under electrical arc discharges based on OFDR[J]. Sensors, 20, 6407(2020).

    [100] Chen C, Chen L, Bao X Y. Distributed temperature profile in hydrogen flame measured by telecom fiber and its durability under flame by OFDR[J]. Optics Express, 30, 19390-19401(2022).

    [101] Sweeney D C, Schrell A M, Petrie C M. An adaptive reference scheme to extend the functional range of optical backscatter reflectometry in extreme environments[J]. IEEE Sensors Journal, 21, 498-509(2021).

    [102] Sweeney D C, Petrie C M. Expanding the range of the resolvable strain from distributed fiber optic sensors using a local adaptive reference approach[J]. Optics Letters, 47, 269-272(2022).

    [103] Bulot P, Cristini O, Bouet M et al. OFDR distributed temperature sensing at 800℃ on a fiber with enhanced Rayleigh scattering profile by doping[C], BM3A.2(2018).

    [104] Bulot P, Bernard R, Cieslikiewicz-Bouet M et al. Performance study of a zirconia-doped fiber for distributed temperature sensing by OFDR at 800 ℃[J]. Sensors, 21, 3788(2021).

    [105] Fu C L, Li P F, Sui R L et al. High-spatial-resolution OFDR distributed temperature sensor based on step-by-step and image wavelet denoising methods[J]. Sensors, 22, 9972(2022).

    [106] Zhang T, Ding Z Y, Liu K et al. Distributed high-temperature sensing based on non-local Haar transform in OFDR[J]. Journal of Lightwave Technology, 41, 5485-5492(2023).

    [107] Xu B J, He J, Du B et al. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing[J]. Optics Express, 29, 32615-32626(2021).

    [108] Du B, He J, Xu B J et al. High-density weak in-fiber micro-cavity array for distributed high-temperature sensing with millimeter spatial resolution[J]. Journal of Lightwave Technology, 40, 7447-7455(2022).

    [109] Liu S, Ding L Y, Guo H Y et al. Thermal stability of drawing-tower grating written in a single mode fiber[J]. Journal of Lightwave Technology, 37, 3073-3077(2019).

    [110] He J, Xu X Z, Du B et al. Stabilized ultra-high-temperature sensors based on inert gas-sealed sapphire fiber Bragg gratings[J]. ACS Applied Materials & Interfaces, 14, 12359-12366(2022).

    [111] Pan R, Yang W L, Li L J et al. All-fiber Fabry-Perot interferometer gas refractive index sensor based on hole-assisted one-core fiber and vernier effect[J]. IEEE Sensors Journal, 21, 15417-15424(2021).

    [112] Zhao Y, Li X G, Cai L et al. Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints[J]. Sensors and Actuators B: Chemical, 221, 406-410(2015).

    [113] Holmes C, Ambran S, Cooper P A et al. Bend monitoring and refractive index sensing using flat fibre and multicore Bragg gratings[J]. Measurement Science and Technology, 31, 085203(2020).

    [114] Qi L, Zhao C L, Yuan J Y et al. Highly reflective long period fiber grating sensor and its application in refractive index sensing[J]. Sensors and Actuators B: Chemical, 193, 185-189(2014).

    [115] Wang P F, Semenova Y, Wu Q et al. Macrobending single-mode fiber-based refractometer[J]. Applied Optics, 48, 6044-6049(2009).

    [116] Du Y, Jothibasu S, Zhuang Y Y et al. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing[J]. Sensors and Actuators B: Chemical, 248, 346-350(2017).

    [117] Xu P B, Yu X F, Chen Z J et al. Distributed refractive index sensing based on bending-induced multimodal interference and Rayleigh backscattering spectrum[J]. Optics Express, 29, 21530-21538(2021).

    [118] Ding Z Y, Sun K L, Liu K et al. Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry[J]. Optics Express, 26, 13042-13054(2018).

    [119] Fu C L, Sui R L, Peng Z W et al. Distributed refractive index sensing based on etched Ge-doped SMF in optical frequency domain reflectometry[J]. Sensors, 23, 4361(2023).

    [120] Zhu Z D, Ba D X, Liu L et al. Temperature-compensated distributed refractive index sensor based on an etched multi-core fiber in optical frequency domain reflectometry[J]. Optics Letters, 46, 4308-4311(2021).

    [121] Zhu Z D, Ba D X, Liu L et al. Temperature-compensated multi-point refractive index sensing based on a cascaded Fabry-Perot cavity and FMCW interferometry[J]. Optics Express, 29, 19034-19048(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yiping Wang, Huajian Zhong, Rongyi Shan, Wenfa Liang, Zhenwei Peng, Yanjie Meng, Changrui Liao, Cailing Fu. Distributed Fiber Optic Sensing Based on Optical Frequency Domain Reflectometry and Its Application Progress (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0106002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Nov. 1, 2023

    Accepted: Nov. 27, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Fu Cailing (fucailing@szu.edu.cn)

    DOI:10.3788/LOP232406

    Topics