Semiconductor Optoelectronics, Volume. 43, Issue 3, 451(2022)
Current Status and Advances of GaNbased UV Laser Diodes for NearUV Wavelength
[1] [1] Kneissl M, Rass J. ⅢNitride Ultraviolet Emitters[M]. Berlin: Springer, 2016.
[2] [2] Hargis Jr P J, Sobering T J, Tisone G C, et al. Ultraviolet fluorescence identification of protein, DNA, and bacteria[C]// Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements. International Society for Optics and Photonics, 1995, 2366: 147153.
[3] [3] Nagahama S, Yanamoto T, Sano M, et al. Characteristics of ultraviolet laser diodes composed of quaternary AlxInyGa(1-x-y)N[J]. Jap. J. of Appl. Phys., 2001, 40(8A): L788.
[4] [4] Jiang L R, Liu J P, Tian A Q, et al. GaNbased green laser diodes[J]. J. of Semiconductors, 2016, 37(11): 111001.
[5] [5] Nakatsu Y, Nagao Y, Hirao T, et al. Blue and green InGaN semiconductor lasers as light sources for displays[C]// Gallium Nitride Materials and Devices XV. Inter. Society for Optics and Photonics, 2020, 11280: 112800S.
[6] [6] Murayama M, Nakayama Y, Yamazaki K, et al. Wattclass green (530nm) and blue (465nm) laser diodes[J]. Physica Status Solidi (A), 2018, 215(10): 1700513.
[7] [7] Liang Y P, Liu J P, Ikeda M, et al. Effect of inhomogeneous broadening on threshold current of GaNbased green laser diodes[J]. J. of Semiconductors, 2019, 40(5): 052802.
[8] [8] Lin H, Li D, Zhang L, et al. Effect of microstructure of Au80Sn20 solder on the thermal resistance TO56 packaged GaNbased laser diodes[J]. J. of Semiconductors, 2020, 41(10): 102104.
[9] [9] Knig H, Ali M, Bergbauer W, et al. Visible GaN laser diodes: from lowest thresholds to highest power levels[J]. Proc. of SPIE, 2019, 10939: 2937.
[10] [10] Zhang M L, Ikeda M, Huang S Y, Liu J P, et al. Ni/Pdbased ohmic contacts to pGaN through pInGaN/p+GaN contacting layers[J]. J. of Semiconductors, 2022. (Accepted).
[11] [11] Nagahama S, Yanamoto T, Sano M, et al. Ultraviolet GaN single quantum well laser diodes[J]. Jap. J. of Appl. Phys., 2001, 40: L785L787.
[12] [12] Kneissl M, Treat D W, Teepe M, et al. Ultraviolet AlGaN multiplequantumwell laser diodes[J]. Appl. Phys. Lett., 2003, 82(25): 44414443.
[13] [13] Kneissl M, Yang Z, Teepe M, et al. Ultraviolet semiconductor laser diodes on bulk AlN[J]. J. of Appl. Phys., 2007, 101(12): 123103.
[14] [14] Kneissl M, Treat D W, Teepe M, et al. Continuouswave operation of ultraviolet InGaN/InAlGaN multiplequantumwell laser diodes[J]. Appl. Phys. Lett., 2003, 82(15): 23862388.
[15] [15] Iida K, Kawashima T, Miyazaki A, et al. 350.9nm UV laser diode grown on lowdislocationdensity AlGaN[J]. Jap. J. of Appl. Phys., 2004, 43(4A): L499.
[16] [16] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336nm AlGaN multiplequantumwell laser diode[J]. Appl. Phys. Lett., 2008, 93: 241106.
[17] [17] Kuwabara M, Yamashita Y, Torii K, et al. Laser operation of nitride laser diodes with GaN well layer in 340nm band[J]. Jap. J. of Appl. Phys., 2013, 52(8S): 08JG10.
[18] [18] Taketomi H, Aoki Y, Takagi Y, et al. Over 1W recordpeakpower operation of a 338nm AlGaN multiplequantumwell laser diode on a GaN substrate[J]. Jap. J. of Appl. Phys., 2016, 55(5S): 05FJ05.
[19] [19] Zhao D, Yang J, Liu Z, et al. Fabrication of room temperature continuouswave operation GaNbased ultraviolet laser diodes[J]. J. of Semiconductors, 2017, 38(5): 051001.
[20] [20] Yang J, Zhao D, Liu Z, et al. A 357.9nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. J. of Semiconductors, 2022, 43(1): 010501.
[21] [21] Yang J, Zhao D G, Liu Z S, et al. Room temperature continuouswave operated 2.0W GaNbased ultraviolet laser diodes[J]. Opt. Lett., 2022, 47(7): 16661668.
[22] [22] Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap[J]. J. of Physics D: Appl. Phys., 2020, 53(50): 503001.
[23] [23] Guo Q. Engineering of electrically injected AlGaNbased UVC lasers[D]. North Carolina: North Carolina State University, 2019.
[24] [24] Zhang Z, Kushimoto M, Sakai T, et al. Design and characterization of a lowopticalloss UVC laser diode[J]. Jap. J. of Appl. Phys., 2020, 59(9): 094001.
[26] [26] Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crackfree ultraviolet GaN/AlGaN laser diodes grown on 2in. sapphire substrate[J]. Jap. J. of Appl. Phys., 2007, 46(9R): 5782.
[27] [27] Taniyasu Y, Carlin J F, Castiglia A, et al. Mg doping for ptype AlInN latticematched to GaN[J]. Appl. Phys. Lett., 2012, 101(8): 082113.
[28] [28] Morko H. Handbook of nitride semiconductors and devices[J]. J. of Nervous & Mental Disease, 2008, 184(7): 440.
[29] [29] Miller D A B, Chemla D S, Damen T C, et al. Bandedge electroabsorption in quantum well structures: The quantumconfined Stark effect[J]. Phys. Rev. Lett., 1984, 53(22): 2173.
[30] [30] Wu F, Sun H, AJia I A, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350nm via step quantum well structure design[J]. J. of Physics D: Appl. Phys., 2017, 50(24): 245101.
[31] [31] Pampili P, Zubialevich V Z, Maaskant P, et al. InAlNbased LEDs emitting in the nearUV region[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SCCB33.
[32] [32] Ban K, Yamamoto J, Takeda K, et al. Internal quantum efficiency of wholecompositionrange AlGaN multiquantum wells[J]. Appl. Phys. Express, 2011, 4(5): 052101.
[33] [33] Bryan Z, Bryan I, Xie J, et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates[J]. Appl. Phys. Lett., 2015, 106(14): 142107.
[34] [34] Fujioka A, Asada K, Yamada H, et al. Highoutputpower 255/280/310nm deep ultraviolet lightemitting diodes and their lifetime characteristics[J]. Semiconductor Science and Technol., 2014, 29(8): 084005.
[35] [35] Karpov S Y, Makarov Y N. Dislocation effect on light emission efficiency in gallium nitride[J]. Appl. Phys. Lett., 2002, 81(25): 47214723.
[36] [36] Tanaka S, Kawase Y, Teramura S, et al. Effect of dislocation density on optical gain and internal loss of AlGaNbased ultravioletB band lasers[J]. Appl. Phys. Express, 2020, 13(4): 045504.
[37] [37] Chichibu S F, Uedono A, Kojima K, et al. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN[J]. J. of Appl. Phys., 2018, 123(16): 161413.
[38] [38] Reshchikov M A, Morko H. Luminescence properties of defects in GaN[J]. J. of Appl. Phys., 2005, 97(6): 519.
[39] [39] Lyons J L, Janotti A, Van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN[J]. Phys. Rev. B, 2014, 89(3): 035204.
[40] [40] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Sidoped AlN[J]. Appl. Phys. Lett., 2018, 112(15): 152101.
[41] [41] Wang Q, Zhang K, Li C, et al. Modulating carrier distribution for efficient AlGaNbased deep ultraviolet lightemitting diodes by introducing an asymmetric quantum well[J]. J. of Electronic Materials, 2021, 50(5): 26432648.
[42] [42] Sadaf S M, Tang H. Mapping the growth of ptype GaN layer under Garich and Nrich conditions at low to high temperatures by plasmaassisted molecular beam epitaxy[J]. Appl. Phys. Lett., 2020, 117(25): 254104.
[43] [43] Hautakangas S, Oila J, Alatalo M, et al. Vacancy defects as compensating centers in Mgdoped GaN[J]. Phys. Rev. Lett., 2003, 90(13): 137402.
[44] [44] Liu J, Ma J, Du X, et al. Tailoring ptype conductivity of aluminum nitride via transition metal and fluorine doping[J]. J. of Alloys and Compounds, 2021, 862: 158017.
[45] [45] Pearton S J, Cho H, LaRoche J R, et al. Oxygen diffusion into SiO2capped GaN during annealing[J]. Appl. Phys. Lett., 1999, 75(19): 29392941.
[46] [46] Stampfl C, Van de Walle C G. Doping of AlxGa1-xN[J]. Appl. Phys. Lett., 1998, 72(4): 459461.
[47] [47] Murotani H, Akase D, Anai K, et al. Dependence of internal quantum efficiency on doping region and Si concentration in Alrich AlGaN quantum wells[J]. Appl. Phys. Lett., 2012, 101(4): 042110.
[48] [48] Narukawa Y, Kawakami Y, Funato M, et al. Role of selfformed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420nm[J]. Appl. Phys. Lett., 1997, 70(8): 981983.
[49] [49] Chichibu S, Wada K, Nakamura S. Spatially resolved cathodoluminescence spectra of InGaN quantum wells[J]. Appl. Phys. Lett., 1997, 71(16): 23462348.
[50] [50] Mukai T, Morita D, Nakamura S. Highpower UV InGaN/AlGaN doubleheterostructure LEDs[J]. J. of Crystal Growth, 1998, 189: 778781.
[51] [51] Zhou R, Ikeda M, Zhang F, et al. TotalInGaNthickness dependent ShockleyReadHall recombination lifetime in InGaN quantum wells[J]. J. of Appl. Phys., 2020, 127(1): 013103.
[52] [52] Coldren L A, Corzine S W, Mashanovitch M L. Diode Lasers and Photonic Integrated Circuits[M]. NJ: Hoboken, 2012.
[53] [53] Collazo R, Mita S, Xie J, et al. Progress on ntype doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications[J]. Physica Status Solidi C, 2011, 8(7/8): 20312033.
[54] [54] Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Alrich AlGaN grown on single crystal AlN and sapphire by MOCVD[J]. Appl. Phys. Lett., 2018, 112(6): 062102.
[55] [55] Fritze S, Dadgar A, Witte H, et al. High Si and Ge ntype doping of GaN dopinglimits and impact on stress[J]. Appl. Phys. Lett., 2012, 100(12): 122104.
[56] [56] Nam K B, Li J, Nakarmi M L, et al. Achieving highly conductive AlGaN alloys with high Al contents[J]. Appl. Phys. Lett., 2002, 81(6): 10381040.
[57] [57] Rounds R, Sarkar B, Klump A, et al. Thermal conductivity of singlecrystalline AlN[J]. Appl. Phys. Express, 2018, 11(7): 071001.
[58] [58] Lagerstedt O, Monemar B. Variation of lattice parameters in GaN with stoichiometry and doping[J]. Phys. Rev. B, 1979, 19(6): 3064.
[59] [59] Rounds R, Sarkar B, Sochacki T, et al. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes[J]. J. of Appl. Phys., 2018, 124(10): 105106.
[60] [60] Greco G, Lucolano F, Roccaforte F. Ohmic contacts to gallium nitride materials[J]. Appl. Surface Science, 2016, 383: 324345.
[61] [61] Liang Y H, Towe E. Progress in efficient doping of high aluminumcontaining group Ⅲnitrides[J]. Appl. Phys. Rev., 2018, 5(1): 011107.
[62] [62] Obloh H, Bachem K H, Kaufmann U, et al. Selfcompensation in Mg doped ptype GaN grown by MOCVD[J]. J. of Crystal Growth, 1998, 195(14): 270273.
[63] [63] Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN∶Mg layers[J]. Phys. Rev. B, 2000, 62(16): 10867.
[64] [64] Morthier G. Influence of the carrier density dependence of the absorption on the harmonic distortion in semiconductor lasers[J]. J. of Lightwave Technol., 1993, 11(1): 1619.
[65] [65] Kozodoy P, Smorchkova Y P, Hansen M, et al. Polarizationenhanced Mg doping of AlGaN/GaN superlattices[J]. Appl. Phys. Lett., 1999, 75(16): 24442446.
[66] [66] Wang L, Li R, Li D, et al. Strain modulationenhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer[J]. Appl. Phys. Lett., 2010, 96(6): 061110.
[67] [67] Li J, Yang W, Li S, et al. Enhancement of ptype conductivity by modifying the internal electric field in Mg and Siδcodoped AlxGa1-xN/AlyGa1-yN superlattices[J]. Appl. Phys. Lett., 2009, 95(15): 151113.
[68] [68] Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Appl. Phys. Lett., 2011, 99(11): 112110.
[69] [69] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.
[70] [70] Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded ⅢⅤ nitride semiconductor alloys[J]. Appl. Phys. Lett., 2002, 81(23): 43954397.
[71] [71] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8nm deepultraviolet laser diode for room temperature operation[J]. Appl. Phys. Express, 2019, 12(12): 124003.
[72] [72] Sato K, Yasue S, et al. Roomtemperature operation of AlGaN ultravioletB laser diode at 298nm on latticerelaxed Al0.6Ga0.4N/AlN/sapphire[J]. Appl. Phys. Express, 2020, 13(3): 031004.
[73] [73] Levinshteǐn M E, Rumyantsev S L, et al. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe[M]. New York: John Wiley & Sons, 2001.
[74] [74] Kinoshita T, Obata T, Yanagi H, et al. High ptype conduction in highAl content Mgdoped AlGaN[J]. Appl. Phys. Lett., 2013, 102(1): 012105.
[75] [75] Bour D P, Kneissl M, Van de Walle C G, et al. Design and performance of asymmetric waveguide nitride laser diodes[J]. IEEE J. of Quantum Electronics, 2000, 36(2): 184191.
[76] [76] Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green[J]. J. of Appl. Phys., 2009, 105(2): 023104.
[77] [77] Yang J, Wang B B, Zhao D G, et al. Realization of 366nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers[J]. J. of Appl. Phys., 2021, 130(17): 173105.
Get Citation
Copy Citation Text
LI Yaqin, LIU Jianpin, TIAN Aiqin, LI Fangzhi, HU Lei, LI Deyao, YANG Hui. Current Status and Advances of GaNbased UV Laser Diodes for NearUV Wavelength[J]. Semiconductor Optoelectronics, 2022, 43(3): 451
Special Issue:
Received: May. 30, 2022
Accepted: --
Published Online: Aug. 1, 2022
The Author Email: Jianpin LIU (jpliu2021@sinano.ac.cn)