Semiconductor Optoelectronics, Volume. 43, Issue 3, 451(2022)

Current Status and Advances of GaNbased UV Laser Diodes for NearUV Wavelength

LI Yaqin1,2, LIU Jianpin1,2、*, TIAN Aiqin2, LI Fangzhi1,2, HU Lei2, LI Deyao2, and YANG Hui1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(76)

    [1] [1] Kneissl M, Rass J. ⅢNitride Ultraviolet Emitters[M]. Berlin: Springer, 2016.

    [2] [2] Hargis Jr P J, Sobering T J, Tisone G C, et al. Ultraviolet fluorescence identification of protein, DNA, and bacteria[C]// Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements. International Society for Optics and Photonics, 1995, 2366: 147153.

    [3] [3] Nagahama S, Yanamoto T, Sano M, et al. Characteristics of ultraviolet laser diodes composed of quaternary AlxInyGa(1-x-y)N[J]. Jap. J. of Appl. Phys., 2001, 40(8A): L788.

    [4] [4] Jiang L R, Liu J P, Tian A Q, et al. GaNbased green laser diodes[J]. J. of Semiconductors, 2016, 37(11): 111001.

    [5] [5] Nakatsu Y, Nagao Y, Hirao T, et al. Blue and green InGaN semiconductor lasers as light sources for displays[C]// Gallium Nitride Materials and Devices XV. Inter. Society for Optics and Photonics, 2020, 11280: 112800S.

    [6] [6] Murayama M, Nakayama Y, Yamazaki K, et al. Wattclass green (530nm) and blue (465nm) laser diodes[J]. Physica Status Solidi (A), 2018, 215(10): 1700513.

    [7] [7] Liang Y P, Liu J P, Ikeda M, et al. Effect of inhomogeneous broadening on threshold current of GaNbased green laser diodes[J]. J. of Semiconductors, 2019, 40(5): 052802.

    [8] [8] Lin H, Li D, Zhang L, et al. Effect of microstructure of Au80Sn20 solder on the thermal resistance TO56 packaged GaNbased laser diodes[J]. J. of Semiconductors, 2020, 41(10): 102104.

    [9] [9] Knig H, Ali M, Bergbauer W, et al. Visible GaN laser diodes: from lowest thresholds to highest power levels[J]. Proc. of SPIE, 2019, 10939: 2937.

    [10] [10] Zhang M L, Ikeda M, Huang S Y, Liu J P, et al. Ni/Pdbased ohmic contacts to pGaN through pInGaN/p+GaN contacting layers[J]. J. of Semiconductors, 2022. (Accepted).

    [11] [11] Nagahama S, Yanamoto T, Sano M, et al. Ultraviolet GaN single quantum well laser diodes[J]. Jap. J. of Appl. Phys., 2001, 40: L785L787.

    [12] [12] Kneissl M, Treat D W, Teepe M, et al. Ultraviolet AlGaN multiplequantumwell laser diodes[J]. Appl. Phys. Lett., 2003, 82(25): 44414443.

    [13] [13] Kneissl M, Yang Z, Teepe M, et al. Ultraviolet semiconductor laser diodes on bulk AlN[J]. J. of Appl. Phys., 2007, 101(12): 123103.

    [14] [14] Kneissl M, Treat D W, Teepe M, et al. Continuouswave operation of ultraviolet InGaN/InAlGaN multiplequantumwell laser diodes[J]. Appl. Phys. Lett., 2003, 82(15): 23862388.

    [15] [15] Iida K, Kawashima T, Miyazaki A, et al. 350.9nm UV laser diode grown on lowdislocationdensity AlGaN[J]. Jap. J. of Appl. Phys., 2004, 43(4A): L499.

    [16] [16] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336nm AlGaN multiplequantumwell laser diode[J]. Appl. Phys. Lett., 2008, 93: 241106.

    [17] [17] Kuwabara M, Yamashita Y, Torii K, et al. Laser operation of nitride laser diodes with GaN well layer in 340nm band[J]. Jap. J. of Appl. Phys., 2013, 52(8S): 08JG10.

    [18] [18] Taketomi H, Aoki Y, Takagi Y, et al. Over 1W recordpeakpower operation of a 338nm AlGaN multiplequantumwell laser diode on a GaN substrate[J]. Jap. J. of Appl. Phys., 2016, 55(5S): 05FJ05.

    [19] [19] Zhao D, Yang J, Liu Z, et al. Fabrication of room temperature continuouswave operation GaNbased ultraviolet laser diodes[J]. J. of Semiconductors, 2017, 38(5): 051001.

    [20] [20] Yang J, Zhao D, Liu Z, et al. A 357.9nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. J. of Semiconductors, 2022, 43(1): 010501.

    [21] [21] Yang J, Zhao D G, Liu Z S, et al. Room temperature continuouswave operated 2.0W GaNbased ultraviolet laser diodes[J]. Opt. Lett., 2022, 47(7): 16661668.

    [22] [22] Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap[J]. J. of Physics D: Appl. Phys., 2020, 53(50): 503001.

    [23] [23] Guo Q. Engineering of electrically injected AlGaNbased UVC lasers[D]. North Carolina: North Carolina State University, 2019.

    [24] [24] Zhang Z, Kushimoto M, Sakai T, et al. Design and characterization of a lowopticalloss UVC laser diode[J]. Jap. J. of Appl. Phys., 2020, 59(9): 094001.

    [26] [26] Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crackfree ultraviolet GaN/AlGaN laser diodes grown on 2in. sapphire substrate[J]. Jap. J. of Appl. Phys., 2007, 46(9R): 5782.

    [27] [27] Taniyasu Y, Carlin J F, Castiglia A, et al. Mg doping for ptype AlInN latticematched to GaN[J]. Appl. Phys. Lett., 2012, 101(8): 082113.

    [28] [28] Morko H. Handbook of nitride semiconductors and devices[J]. J. of Nervous & Mental Disease, 2008, 184(7): 440.

    [29] [29] Miller D A B, Chemla D S, Damen T C, et al. Bandedge electroabsorption in quantum well structures: The quantumconfined Stark effect[J]. Phys. Rev. Lett., 1984, 53(22): 2173.

    [30] [30] Wu F, Sun H, AJia I A, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350nm via step quantum well structure design[J]. J. of Physics D: Appl. Phys., 2017, 50(24): 245101.

    [31] [31] Pampili P, Zubialevich V Z, Maaskant P, et al. InAlNbased LEDs emitting in the nearUV region[J]. Jap. J. of Appl. Phys., 2019, 58(SC): SCCB33.

    [32] [32] Ban K, Yamamoto J, Takeda K, et al. Internal quantum efficiency of wholecompositionrange AlGaN multiquantum wells[J]. Appl. Phys. Express, 2011, 4(5): 052101.

    [33] [33] Bryan Z, Bryan I, Xie J, et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates[J]. Appl. Phys. Lett., 2015, 106(14): 142107.

    [34] [34] Fujioka A, Asada K, Yamada H, et al. Highoutputpower 255/280/310nm deep ultraviolet lightemitting diodes and their lifetime characteristics[J]. Semiconductor Science and Technol., 2014, 29(8): 084005.

    [35] [35] Karpov S Y, Makarov Y N. Dislocation effect on light emission efficiency in gallium nitride[J]. Appl. Phys. Lett., 2002, 81(25): 47214723.

    [36] [36] Tanaka S, Kawase Y, Teramura S, et al. Effect of dislocation density on optical gain and internal loss of AlGaNbased ultravioletB band lasers[J]. Appl. Phys. Express, 2020, 13(4): 045504.

    [37] [37] Chichibu S F, Uedono A, Kojima K, et al. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN[J]. J. of Appl. Phys., 2018, 123(16): 161413.

    [38] [38] Reshchikov M A, Morko H. Luminescence properties of defects in GaN[J]. J. of Appl. Phys., 2005, 97(6): 519.

    [39] [39] Lyons J L, Janotti A, Van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN[J]. Phys. Rev. B, 2014, 89(3): 035204.

    [40] [40] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Sidoped AlN[J]. Appl. Phys. Lett., 2018, 112(15): 152101.

    [41] [41] Wang Q, Zhang K, Li C, et al. Modulating carrier distribution for efficient AlGaNbased deep ultraviolet lightemitting diodes by introducing an asymmetric quantum well[J]. J. of Electronic Materials, 2021, 50(5): 26432648.

    [42] [42] Sadaf S M, Tang H. Mapping the growth of ptype GaN layer under Garich and Nrich conditions at low to high temperatures by plasmaassisted molecular beam epitaxy[J]. Appl. Phys. Lett., 2020, 117(25): 254104.

    [43] [43] Hautakangas S, Oila J, Alatalo M, et al. Vacancy defects as compensating centers in Mgdoped GaN[J]. Phys. Rev. Lett., 2003, 90(13): 137402.

    [44] [44] Liu J, Ma J, Du X, et al. Tailoring ptype conductivity of aluminum nitride via transition metal and fluorine doping[J]. J. of Alloys and Compounds, 2021, 862: 158017.

    [45] [45] Pearton S J, Cho H, LaRoche J R, et al. Oxygen diffusion into SiO2capped GaN during annealing[J]. Appl. Phys. Lett., 1999, 75(19): 29392941.

    [46] [46] Stampfl C, Van de Walle C G. Doping of AlxGa1-xN[J]. Appl. Phys. Lett., 1998, 72(4): 459461.

    [47] [47] Murotani H, Akase D, Anai K, et al. Dependence of internal quantum efficiency on doping region and Si concentration in Alrich AlGaN quantum wells[J]. Appl. Phys. Lett., 2012, 101(4): 042110.

    [48] [48] Narukawa Y, Kawakami Y, Funato M, et al. Role of selfformed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420nm[J]. Appl. Phys. Lett., 1997, 70(8): 981983.

    [49] [49] Chichibu S, Wada K, Nakamura S. Spatially resolved cathodoluminescence spectra of InGaN quantum wells[J]. Appl. Phys. Lett., 1997, 71(16): 23462348.

    [50] [50] Mukai T, Morita D, Nakamura S. Highpower UV InGaN/AlGaN doubleheterostructure LEDs[J]. J. of Crystal Growth, 1998, 189: 778781.

    [51] [51] Zhou R, Ikeda M, Zhang F, et al. TotalInGaNthickness dependent ShockleyReadHall recombination lifetime in InGaN quantum wells[J]. J. of Appl. Phys., 2020, 127(1): 013103.

    [52] [52] Coldren L A, Corzine S W, Mashanovitch M L. Diode Lasers and Photonic Integrated Circuits[M]. NJ: Hoboken, 2012.

    [53] [53] Collazo R, Mita S, Xie J, et al. Progress on ntype doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications[J]. Physica Status Solidi C, 2011, 8(7/8): 20312033.

    [54] [54] Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Alrich AlGaN grown on single crystal AlN and sapphire by MOCVD[J]. Appl. Phys. Lett., 2018, 112(6): 062102.

    [55] [55] Fritze S, Dadgar A, Witte H, et al. High Si and Ge ntype doping of GaN dopinglimits and impact on stress[J]. Appl. Phys. Lett., 2012, 100(12): 122104.

    [56] [56] Nam K B, Li J, Nakarmi M L, et al. Achieving highly conductive AlGaN alloys with high Al contents[J]. Appl. Phys. Lett., 2002, 81(6): 10381040.

    [57] [57] Rounds R, Sarkar B, Klump A, et al. Thermal conductivity of singlecrystalline AlN[J]. Appl. Phys. Express, 2018, 11(7): 071001.

    [58] [58] Lagerstedt O, Monemar B. Variation of lattice parameters in GaN with stoichiometry and doping[J]. Phys. Rev. B, 1979, 19(6): 3064.

    [59] [59] Rounds R, Sarkar B, Sochacki T, et al. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes[J]. J. of Appl. Phys., 2018, 124(10): 105106.

    [60] [60] Greco G, Lucolano F, Roccaforte F. Ohmic contacts to gallium nitride materials[J]. Appl. Surface Science, 2016, 383: 324345.

    [61] [61] Liang Y H, Towe E. Progress in efficient doping of high aluminumcontaining group Ⅲnitrides[J]. Appl. Phys. Rev., 2018, 5(1): 011107.

    [62] [62] Obloh H, Bachem K H, Kaufmann U, et al. Selfcompensation in Mg doped ptype GaN grown by MOCVD[J]. J. of Crystal Growth, 1998, 195(14): 270273.

    [63] [63] Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN∶Mg layers[J]. Phys. Rev. B, 2000, 62(16): 10867.

    [64] [64] Morthier G. Influence of the carrier density dependence of the absorption on the harmonic distortion in semiconductor lasers[J]. J. of Lightwave Technol., 1993, 11(1): 1619.

    [65] [65] Kozodoy P, Smorchkova Y P, Hansen M, et al. Polarizationenhanced Mg doping of AlGaN/GaN superlattices[J]. Appl. Phys. Lett., 1999, 75(16): 24442446.

    [66] [66] Wang L, Li R, Li D, et al. Strain modulationenhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer[J]. Appl. Phys. Lett., 2010, 96(6): 061110.

    [67] [67] Li J, Yang W, Li S, et al. Enhancement of ptype conductivity by modifying the internal electric field in Mg and Siδcodoped AlxGa1-xN/AlyGa1-yN superlattices[J]. Appl. Phys. Lett., 2009, 95(15): 151113.

    [68] [68] Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Appl. Phys. Lett., 2011, 99(11): 112110.

    [69] [69] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.

    [70] [70] Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded ⅢⅤ nitride semiconductor alloys[J]. Appl. Phys. Lett., 2002, 81(23): 43954397.

    [71] [71] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8nm deepultraviolet laser diode for room temperature operation[J]. Appl. Phys. Express, 2019, 12(12): 124003.

    [72] [72] Sato K, Yasue S, et al. Roomtemperature operation of AlGaN ultravioletB laser diode at 298nm on latticerelaxed Al0.6Ga0.4N/AlN/sapphire[J]. Appl. Phys. Express, 2020, 13(3): 031004.

    [73] [73] Levinshteǐn M E, Rumyantsev S L, et al. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe[M]. New York: John Wiley & Sons, 2001.

    [74] [74] Kinoshita T, Obata T, Yanagi H, et al. High ptype conduction in highAl content Mgdoped AlGaN[J]. Appl. Phys. Lett., 2013, 102(1): 012105.

    [75] [75] Bour D P, Kneissl M, Van de Walle C G, et al. Design and performance of asymmetric waveguide nitride laser diodes[J]. IEEE J. of Quantum Electronics, 2000, 36(2): 184191.

    [76] [76] Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green[J]. J. of Appl. Phys., 2009, 105(2): 023104.

    [77] [77] Yang J, Wang B B, Zhao D G, et al. Realization of 366nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers[J]. J. of Appl. Phys., 2021, 130(17): 173105.

    Tools

    Get Citation

    Copy Citation Text

    LI Yaqin, LIU Jianpin, TIAN Aiqin, LI Fangzhi, HU Lei, LI Deyao, YANG Hui. Current Status and Advances of GaNbased UV Laser Diodes for NearUV Wavelength[J]. Semiconductor Optoelectronics, 2022, 43(3): 451

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 30, 2022

    Accepted: --

    Published Online: Aug. 1, 2022

    The Author Email: Jianpin LIU (jpliu2021@sinano.ac.cn)

    DOI:10.16818/j.issn1001-5868.2022053004

    Topics