Journal of Applied Optics, Volume. 43, Issue 5, 886(2022)

Area mapping for water and forest based on satellite hyper-spectral remote sensing

Wenrui TANG1...1,1,1,1,1, Lin MA1,1,1,1,1,1, Siqi ZHU1,1,1,1,1,1, Sifan LIN1,1,1,1,1,1, and Longze JIA1,1,1,1,11 |Show fewer author(s)
Author Affiliations
  • 11Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 12Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
  • 13Orbital Exploration Aerospace Technology Co.,Ltd., Guangzhou 510700, China
  • show less
    Figures & Tables(13)
    Hyper-spectral cube collected by “OHS-C”(geographical location is E113°36′48′′, N22°45′11′′)
    Location display of sampling points for standard spectra of water, forest and buildings
    Average spectrum and standard deviation of fluctuations of water, forest and buildings
    Structure diagram of BP neural network
    Relationship diagram between sample number and accuracy rate
    Pseudo-color marking map of feature types
    Pixel extraction of Xili Reservoir
    Pixel extraction of Qi'ao Island
    • Table 1. Brief introduction of “OHS-C” hyper-spectral satellite shooting data

      View table
      View in Article

      Table 1. Brief introduction of “OHS-C” hyper-spectral satellite shooting data

      内容简介
      星号OHS-C
      左上角点经纬Lon.E113°36′48′′
      Lat.N22°45′11′′
      成像时间2018年9月15日
      侧摆角−10.326°
      太阳高度角62.073°
      影像分辨率5056× 5056 像素
      轨道高度520 km
      地物描述城市、森林、湖泊、海洋
      地面分辨率10 m
      数据处理等级1级
      已完成预处理项相对辐射定标、几何校正
    • Table 2. Central wavelengths of “OHS-C” hyper-spectral satellite

      View table
      View in Article

      Table 2. Central wavelengths of “OHS-C” hyper-spectral satellite

      通道数中心波长/nm通道数中心波长/nm
      146617716
      248018730
      350019746
      452020760
      553621776
      655022790
      756623806
      858024820
      959625836
      1061026850
      1162627866
      1264028880
      1365629896
      1467030910
      1568631926
      1670032940
    • Table 4. Statistical results of sensitivity and specificity

      View table
      View in Article

      Table 4. Statistical results of sensitivity and specificity

      统计结果水体林木灵敏度
      水体3891197.25%
      林木742398.37%
      特异性98.23%97.47%
    • Table 5. Area monitoring of water and forest

      View table
      View in Article

      Table 5. Area monitoring of water and forest

      地物种类像素点个数对应面积/km2
      水体12432 6501243.2650
      林木5113125511.3125
      其他8017361801.7361
      全图255631362556.3136
    • Table 6. Verification of surveying and mapping area

      View table
      View in Article

      Table 6. Verification of surveying and mapping area

      地物总像素点个数测绘面积/km2实际面积/km2面积误差/km2
      西丽 水库 445544.45544.60.1446
      淇澳岛22171322.171323.8(官方统 计绿化程 度90%以上) <0.7513
    Tools

    Get Citation

    Copy Citation Text

    Wenrui TANG, Lin MA, Siqi ZHU, Sifan LIN, Longze JIA. Area mapping for water and forest based on satellite hyper-spectral remote sensing[J]. Journal of Applied Optics, 2022, 43(5): 886

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OE INFORMATION ACQUISITION AND PROCESSING

    Received: Sep. 2, 2021

    Accepted: --

    Published Online: Oct. 12, 2022

    The Author Email:

    DOI:10.5768/JAO202243.0502002

    Topics