Opto-Electronic Engineering, Volume. 51, Issue 8, 240040(2024)
Torsion pendulum design for metasurface-based diffraction light sail optical force measurement
[1] E F Nichols, G F Hull. The pressure due to radiation. (second paper. ). Phys Rev (Series I), 17, 26-50(1903).
[2] J C Maxwell. A treatise on electricity and magnetism. Nature, 7, 478-480(1873).
[3] A Einstein. Concerning an heuristic point of view toward the emission and transformation of light. Am J Phys, 33, 367(1965).
[4] A Ashkin, J M Dziedzic, J E Bjorkholm et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 11, 288-290(1986).
[5] L Long, Q R Deng, R T Huang et al. 3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging. Light Sci Appl, 12, 219(2023).
[6] J Chan, T P M Alegre, A H Safavi-Naeini et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).
[7] R W Peterson, T P Purdy, N S Kampel et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys Rev Lett, 116, 063601(2016).
[8] Y Tsuda, O Mori, R Funase et al. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut, 69, 833-840(2011).
[9] L Johnson, M Whorton, A Heaton et al. NanoSail-D: a solar sail demonstration mission. Acta Astronaut, 68, 571-575(2011).
[10] H A Atwater, A R Davoyan, O Ilic et al. Materials challenges for the Starshot lightsail. Nat Mater, 17, 861-867(2018).
[11] K Achouri, O V Céspedes, C Caloz. Solar “meta-sails” for agile optical force control. IEEE Trans Antennas Propag, 67, 6924-6934(2019).
[12] O Ilic, H A Atwater. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat Photonics, 13, 289-295(2019).
[13] G A Swartzlander. Theory of radiation pressure on a diffractive solar sail. J Opt Sci Am B, 39, 2556-2563(2022).
[14] K Xu, X E Wang, X H Fan et al. Meta-holography: from concept to realization. Opto-Electron Eng, 49, 220183(2022).
[15] M B Pu, X G Luo. Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging. Opto-Electron Adv, 6, 230153(2023).
[16] F Zhang, M B Pu, X Li et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater, 33, 2008157(2021).
[17] Y X Zhang, M B Pu, J J Jin et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv, 5, 220058(2022).
[18] G Yang, Y H Guo, M B Pu et al. Miniature computational spectral detection technology based on correlation value selection. Opto-Electron Eng, 49, 220130(2022).
[19] B Liu, X Xie, X T Gan et al. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves. Opto-Electron Eng, 50, 230119(2023).
[20] M N Jiang, Y Chen, F Zhang et al. Alignment-free angular momentum detection via spin-independent astigmatic transformation. Adv Opt Mater, 12, 2301314(2024).
[21] T Xie, F Zhang, M B Pu et al. Ultrathin, wide-angle, and high-resolution meta-imaging system via rear-position wavevector filter. Laser Photonics Rev, 17, 2300119(2023).
[22] F Zhang, Y H Guo, M B Pu et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun, 14, 1946(2023).
[23] X Lan, Q R Deng, W T Zhang et al. Efficient chiral absorber based on twisted catenary structure. Opto-Electron Eng, 49, 220157(2022).
[24] L Ke, S M Zhang, C X Li et al. Research progress on hybrid vector beam implementation by metasurfaces. Opto-Electron Eng, 50, 230117(2023).
[25] Y Z Chen, W K Pan, X Y Jin et al. Far-field radiation manipulations of on-chip optical near-fields. Opto-Electron Eng, 50, 230173(2023).
[26] Y Z Shi, X H Xu, M Nieto-Vesperinas et al. Advances in light transverse momenta and optical lateral forces. Adv Opt Photonics, 15, 835-906(2023).
[27] K H Shen, Y Duan, P Ju et al. On-chip optical levitation with a metalens in vacuum. Optica, 8, 1359-1362(2021).
[28] F Xu, Y Liu, C Zhang et al. Optically levitated conveyor belt based on polarization-dependent metasurface lens arrays. Opt Lett, 47, 2194-2197(2022).
[29] X Y Li, Y Zhou, S Y Ge et al. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface. Opt Lett, 47, 977-980(2022).
[30] D Andrén, D G Baranov, S Jones et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat Nanotechnol, 16, 970-974(2021).
[31] H Li, Y Y Cao, B J Shi et al. Momentum-topology-induced optical pulling force. Phys Rev Lett, 124, 143901(2020).
[32] R C Jin, Y H Xu, Z G Dong et al. Optical pulling forces enabled by hyperbolic metamaterials. Nano Lett, 21, 10431-10437(2021).
[34] A H Dorrah, N A Rubin, A Zaidi et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photonics, 15, 287-296(2021).
[35] W W Liu, Z C Li, M A Ansari et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces. Adv Mater, 35, 2208884(2023).
[36] X G Luo. Multiscale optical field manipulation via planar digital optics. ACS Photonics, 10, 2116-2127(2023).
[37] M Ziebart, S Adhya, A Sibthorpe et al. Combined radiation pressure and thermal modelling of complex satellites: algorithms and on-orbit tests. Adv Space Res, 36, 424-430(2005).
[38] J S Cui, C R Li, Y F Liu. Development of a light pressure observatory. Phys Exp, 19, 29-30(1999).
[39] T Long, G Q Zhao, B Q Du et al. Measuring light pressure using piezoelectric ceramic. Phys Exp, 36, 20-22(2016).
[40] V Nesterov. Facility and methods for the measurement of micro and nano forces in the range below 10−5 N with a resolution of 10−12 N (development concept). Meas Sci Technol, 18, 360-366(2007).
[41] V Nesterov. A nanonewton force facility and a novel method for measurements of the air and vacuum permittivity at zero frequencies. Meas Sci Technol, 20, 084012(2009).
[42] V Nesterov, M Mueller, L L Frumin et al. A new facility to realize a nanonewton force standard based on electrostatic methods. Metrologia, 46, 277-282(2009).
[43] P A Williams, A B Artusio-Glimpse, J A Hadler et al. Radiation-pressure-enabled traceable laser sources at CW powers up to 50 kW. IEEE Trans Instrum Meas, 68, 1833-1839(2019).
[44] P Williams, J Hadler, F Maring et al. Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure. Opt Express, 25, 4382-4392(2017).
[45] L Q Zhao, Z S Sun, D Y Yu et al. Measurement repeatability of high power laser measuring device based on light pressure. Chin Opt, 16, 382-389(2023).
[47] Y J L Chu, E M Jansson, Jr G A Swartzlander. Measurements of radiation pressure owing to the grating momentum. Phys Rev Lett, 121, 063903(2018).
[48] Y J L Chu, N V Tabiryan, Jr G A Swartzlander. Experimental verification of a bigrating beam rider. Phys Rev Lett, 123, 244302(2019).
[49] Z G Liu, G S Huang, Z Z Li et al. Measuring light pressure based on mechanical resonance. Phys Exp, 37, 1-6,12(2017).
[50] S H Guo. Electricity and Magnetism, 180-185(2008).
[51] Q Ye, H Z Lin. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields. Eur J Phys, 38, 045202(2017).
[52] Z Y Zhao, M B Pu, Y Q Wang et al. The generalized laws of refraction and reflection. Opto-Electron Eng, 44, 129-139(2017).
Get Citation
Copy Citation Text
Pan Gong, Anbin Du, Fei Zhang, Mingbo Pu, Tuojiang Tang, Lanting Li, Xiangang Luo. Torsion pendulum design for metasurface-based diffraction light sail optical force measurement[J]. Opto-Electronic Engineering, 2024, 51(8): 240040
Category: Article
Received: Feb. 26, 2024
Accepted: Apr. 24, 2024
Published Online: Nov. 12, 2024
The Author Email: