Optics and Precision Engineering, Volume. 24, Issue 1, 152(2016)
Stiffness allocation and analysis of TMT M3S
[1] [1] ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes [J]. Chinese Optics, 2012(4): 327-336.(in Chinese)
[2] [2] TMT GROUP. Design requirements documentfor tertiary mirror system (M3S) [Z]. TMT. OPT. DRD, 2012.
[3] [3] GLADWELL G M L. Inverse Problems in Vibration [M]. Dordrecht: Martinus Noordhoff Publisher, 1986.
[4] [4] RAM Y M, GLADWELL G M L. Constructing a finite element model of a vibrating rod from eigendata [J]. J. of Sound and Vibration, 1994, 169(2): 229-237.
[5] [5] HU X Y, ZHANG L, PENG ZH B. On the construction of a Jacobi matrix from its defective eigen-pair and a principal submatrix [J]. Mathematica Numerica Sinica, 2000, 22: 345-354.(in Chinese)
[9] [9] CHENG J Q. Principles of Astronomical Telescope Design [M]. Beijing: China Science & Technology Press, 2003.(in Chinese)
[10] [10] BELY P Y. The Design and Construction of Large Optical Telescopes [M]. Springer-Verlag, 2003.
[11] [11] SHI H M. Vibration Systems—Analyzing·Testing·Modeling·Controlling[M]. Wuhan: Huazhong University of Science and Technology Press, 2004, 2: 91-124.(in Chinese)
[13] [13] BOOR C De, GLOUB G H. The numerically stable reconstruction of a Jacobi matrix from spectral data [J]. Linear Algebra Appl, 1978(21): 245-260.
[14] [14] GRAY L J, WILSON D G. Construction of a Jacobi matrix from spectral data [J]. Linear Algebra Appl., 1976(14): 131-134.
[15] [15] HALD O H. Inverse eigenvalue problem for Jacobi matrices [J]. Linear Algebra Appl., 1976(14): 63-85.
Get Citation
Copy Citation Text
YANG Fei, LIU Guo-jun, ZHAO Hong-chao, ZHANG Jing-xu. Stiffness allocation and analysis of TMT M3S[J]. Optics and Precision Engineering, 2016, 24(1): 152
Category:
Received: Mar. 20, 2015
Accepted: --
Published Online: Mar. 22, 2016
The Author Email: