Optoelectronics Letters, Volume. 20, Issue 11, 663(2024)

Real-time detection of methane concentration based on TDLAS technology and 1D-WACNN*

Lingling KAN... Kai MIAO, Hongwei LIANG, Rui NIE and Yang YE |Show fewer author(s)
References(18)

[1] [1] KWASNY M, BOMBALSKA A. Optical methods of methane detection[J]. Sensors, 2023, 23: 2834.

[2] [2] YANG K, ZHANG L, WU X S, et al. Methane concentration detection system for cigarette smoke based on TDLAS technology[J]. Spectroscopy and spectral analysis, 2015, 35(12): 3310.

[3] [3] NOEL S, BRAMSTEDT K, ROZANOV A, et al. Stratospheric methane profiles from sciamachy solar occultation measurements derived with onion peeling DOAS[J]. Atmospheric measurement techniques, 2011, 4: 2567-2577.

[4] [4] TAN T, LEBRON G. Determination of carbon dioxide, carbon monoxide, and methane concentrations in cigarette smoke by fourier transform infrared spectroscopy[J]. Journal of chemical education, 2011, 89(3): 383-386.

[5] [5] ZHOU Z, CHENG Y, YIN S F, et al. Simulation analysis and experimental study of high precision laser methane telemetry parameters for non-cooperative target[J]. Journal of optoelectronics·laser, 2023, 34(08): 861-871. (in Chinese)

[6] [6] LIU Y, WU J N, CHEN M M, et al. Trace methane gas detector based on TDLAS-WMS[J]. Spectroscopy and spectral analysis, 2016, 36(01): 279-282.

[7] [7] CHEN X Y, CHEN H Y. Improved LMS adaptive algorithm for noise reduction in TDLAS methane detection[J/OL]. Laser journal, 2023, [2023-10-13]. http://kns.cnki.net/kcms/detail/50.1085.TN.20230807.1439.002.html. (in Chinese)

[8] [8] TERBE D, ORZ L, ZARANDY . Classification of holograms with 3D-CNN[J]. Sensors, 2022, 22: 8366.

[9] [9] ZHANG T J. Flow measurement of natural gas in pipeline based on 1D-convolutional neural network[J]. International journal of computational intelligence systems, 2020, 13: 1198-1206.

[10] [10] LU C S, BIAN Y M, HU X, et al. Mixed gas concentration inversion based on the ultraviolet absorption spectrum by a hierarchical convolutional neural network[J]. Journal of applied spectroscopy, 2022, 89: 751-760.

[11] [11] LV C G, GU Y W, ZHAO X Y, et al. Mixed gas concentration inversion based on the hierarchical feature fusion convolutional neural network[J]. Optics communications, 2023, 536: 129369.

[12] [12] XIAO B W, YAN C M. A lightweight global awareness deep network model for flame and smoke detection[J]. Optoelectronics letters, 2023, 19(10): 614-622.

[13] [13] CUI H B, WANG F, HU S Y, et al. Determination of methane during anaerobic digestion by tunable diode laser absorption spectroscopy (TDLAS)[J]. Instrumentation science & technology, 2023, 51(5): 44-55.

[14] [14] FU B, ZHANG C H, LYU W H, et al. Recent progress on laser absorption spectroscopy for determination of gaseous chemical species[J]. Applied spectroscopy reviews, 2022, 57: 112-152.

[15] [15] SONG X D, CONG Y Y, SONG Y F, et al. A bearing fault diagnosis model based on CNN with wide convolution kernels[J]. Ambient intelligence and humanized computing, 2022, 13: 4041-4056.

[16] [16] LI Z Q, JIANG J, CHEN X, et al. Dense-scale dynamic network with filter-varying atrous convolution for semantic segmentation[J]. Applied intelligence, 2023, 53(22): 26810-26826.

[17] [17] LI K, LIU Z D. MCANet: multi-scale contextual feature fusion network based on atrous convolution[J]. Multimedia tools and applications, 2023, 82(22): 1-24.

[18] [18] UYANIK H, ENTVRK E, AKPINAR M, et al. A multi-input convolutional neural networks model for earthquake precursor detection based on ionospheric total electron content[J]. Remote sensing, 2023, 15(24): 5690.

Tools

Get Citation

Copy Citation Text

KAN Lingling, MIAO Kai, LIANG Hongwei, NIE Rui, YE Yang. Real-time detection of methane concentration based on TDLAS technology and 1D-WACNN*[J]. Optoelectronics Letters, 2024, 20(11): 663

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: PAPERS

Received: Nov. 1, 2023

Accepted: Dec. 25, 2024

Published Online: Dec. 25, 2024

The Author Email:

DOI:10.1007/s11801-024-3237-8

Topics