Journal of Synthetic Crystals, Volume. 52, Issue 7, 1335(2023)
Growth and Property of Sapphire Single Crystal Fibers
[1] [1] ANDRADE E N D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342.
[2] [2] CZOCHRALSKI J. Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle[J]. Zeitschrift Für Physikalische Chemie, 1918, 92U(1): 219-221.
[3] [3] GOMPER Z .Untersuchungen an einkristalldrhten[J]. Zeitschrift Für Physik, 1922, 8(1): 184-190.
[4] [4] LABELLE H E, MLAVSKY A I. Growth of sapphire filaments from the melt[J]. Nature, 1967, 216(5115): 574-575.
[5] [5] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104.
[6] [6] HAGGERTY J S. Production of fibers by a floating zone fiber drawing technique[R]. 1972.
[7] [7] FEJER M, BYER R L, FEIGELSON R, et al. Growth and characterization of single crystal refractory oxide fibers[C]//1982 Los Angeles Technical Symposium. Proc SPIE 0320, Advances in Infrared Fibers II, Los Angeles, USA. 1982, 0320: 50-55.
[9] [9] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[C]//HAMMERLING P, BUDGOR AB, PINTO A. Tunable Solid State Lasers. Berlin, Heidelberg: Springer, 1985: 129-142.
[10] [10] FEIGELSON R S. Pulling optical fibers[J]. Journal of Crystal Growth, 1986, 79(1/2/3): 669-680.
[11] [11] FEIGELSON R S. Opportunities for research on single-crystal fibers[J]. Materials Science and Engineering: B, 1988, 1(1): 67-75.
[12] [12] FEIGELSON R S. Growth of single crystal fibers[J]. MRS Bulletin, 1988, 13(10): 47-55.
[13] [13] FEIGELSON R S, KWAY W L, ROUTE R K. Single crystal fibers by the laser-heated pedestal growth method[C]//Proc SPIE 0484, Infrared Optical Materials and Fibers III, 1984, 0484: 133-143.
[14] [14] FEJER M M, NIGHTINGALE J L, MAGEL G A, et al. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers[J]. Review of Scientific Instruments, 1984, 55(11): 1791-1796.
[15] [15] FEJER M M, NIGHTINGALE J L, MAGEL G A, et al. Laser assisted growth of optical quality single crystal fibers[C]//1984 Los Angeles Technical Symposium. Proc SPIE 0460, Processing of Guided Wave Optoelectronic Materials I, Los Angeles, USA. 1984, 0460: 26-33.
[16] [16] KIM W, SHAW B, BAYYA S, et al. Cladded single crystal fibers for high power fiber lasers[C]//SPIE Optical Engineering + Applications. Proc SPIE 9958, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, San Diego, California, USA. 2016, 9958: 117-124.
[17] [17] ZHANG J, CHEN Y, PONTING B, et al. Highly efficient waveguided laser performance of diode pumped unclad Yb∶YAG crystalline fibre[J]. Laser Physics Letters, 2016, 13(7): 075101.
[18] [18] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101.
[22] [22] DAI Y, ZHANG Z H, WANG Y X, et al. Growth of Tm∶Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674.
[23] [23] YANG Y L, YE L H, BAO R J, et al. Growth and characterization of Yb∶Ho∶YAG single crystal fiber[J]. Infrared Physics & Technology, 2018, 91: 85-89.
[24] [24] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25.
[25] [25] WANG N N, WANG X L, HU X H, et al. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb∶YAG single crystal fiber(SCF)amplifier[J]. Optics & Laser Technology, 2020, 127: 106202.
[26] [26] LIU J, DONG J F, WANG Y Y, et al. Tm∶YAG single-crystal fiber laser[J]. Optics Letters, 2021, 46(18): 4454-4457.
[27] [27] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~2 μm CW laser operation of LD-pumped Tm3+∶CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684-6695.
[28] [28] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm∶LuAG single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898.
[29] [29] MAXWELL G, PONTING B, GEBREMICHAEL E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12.
[30] [30] BERA S, NIE C D, SOSKIND M G, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique[J]. Applied Optics, 2017, 56(35): 9649-9655.
[33] [33] WANG S C, HSU C Y, YANG T T, et al. Laser-diode pumped glass-clad Ti∶sapphire crystal fiber laser[J]. Optics Letters, 2016, 41(14): 3217-3220.
[34] [34] MERBERG G N, HARRINGTON J A. Optical and mechanical properties of single-crystal sapphire optical fibers[J]. Applied Optics, 1993, 32(18): 3201-3209.
[35] [35] WU H F, PERROTTA A J, FEIGELSON R S. Mechanical characterization of single-crystal α-Al2O3 fibres grown by the laser-heated pedestal technique[J]. Journal of Materials Science Letters, 1991, 10(24): 1428-1429.
[36] [36] KURLOV V N, KIIKO V M, KOLCHIN A A, et al. Sapphire fibres grown by a modified internal crystallisation method[J]. Journal of Crystal Growth, 1999, 204(4): 499-504.
Get Citation
Copy Citation Text
ZHANG Zeyu, WU Yufei, WANG Tao, ZHANG Jian, JIA Zhitai, TAO Xutang. Growth and Property of Sapphire Single Crystal Fibers[J]. Journal of Synthetic Crystals, 2023, 52(7): 1335
Category:
Received: Feb. 17, 2023
Accepted: --
Published Online: Oct. 28, 2023
The Author Email: Zeyu ZHANG (zzy2276728884@163.com)
CSTR:32186.14.