Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3896(2024)
Research Progress on Aerogels Prepared by Chemical Vapor Deposition
[1] [1] GUO J R, FU S B, DENG Y P, et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions[J]. Nature, 2022, 606(7916): 909-916.
[2] [2] JIN R Z, ZHOU Z H, LIU J, et al. Aerogels for thermal protection and their application in aerospace[J]. Gels, 2023, 9(8): 606.
[3] [3] BERARDI U, SPRENGARD C. An overview of and introduction to current researches on super insulating materials for high-performance buildings[J]. Energy Build, 2020, 214: 109890.
[4] [4] SHEN J, ZHANG X X. Recent progress and applications of aerogels in China[J]. J Sol Gel Sci Technol, 2023, 106(2): 290-318.
[5] [5] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Acc Chem Res, 2016, 49(1): 96-105.
[7] [7] SUZUKI Y, BERGER M H, D'ELIA D, et al. Synthesis and microstructure of a novel tio2 aerogel-TiO2 nanowire composite[J]. Nano, 2008, 3(5): 373-379.
[8] [8] LIU F Q, JIANG Y G, PENG F, et al. Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1 800 ℃[J]. Chem Eng J, 2023, 461: 141721.
[9] [9] PENG F, JIANG Y G, FENG J, et al. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1 500 ℃[J]. Chem Eng J, 2021, 411: 128402.
[10] [10] LI J X, AHMAD Z, CHEN J J, et al. Fabrication of SiC nanofiber aerogel felt with high-temperature thermal insulation performance[J]. J Eur Ceram Soc, 2024, 44(4): 1923-1931.
[11] [11] LI G Y, CHAI Y S, ZHANG X T. Laser ablation-induced boron nitride aerogels with intrinsic photoluminescence for efficient information encryption[J]. Adv Funct Materials, 2024, 34(23): 2314724.
[12] [12] LUO Y, LI K, CHEN Y T, et al. Single-atom and hierarchical-pore aerogel confinement strategy for low-platinum fuel cells[J]. Adv Mater, 2023, 35(31): e2300624.
[13] [13] LUO Y, YU L F, MEN J, et al. Ultralow thermal conductivity of single-atom doped carbon aerogel synthesized with a facile ambient-pressure-drying strategy[J]. Carbon, 2023, 213: 118167.
[14] [14] MEN J, FENG J Z, JIANG Y G, et al. Synthesis of environmentally friendly nanoporous monolithic carbon aerogels via ambient pressure drying for high-temperature thermal insulators[J]. ACS Appl Nano Mater, 2024, 7(7): 7132-7141.
[16] [16] WU X D, LI W, SHAO G F, et al. Investigation on textural and structural evolution of the novel crack-free equimolar Al2O3-SiO2- TiO2 ternary aerogel during thermal treatment[J]. Ceram Int, 2017, 43(5): 4188-4196.
[17] [17] YAO N, CAO S L, YEUNG K L. Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures[J]. Microporous Mesoporous Mater, 2009, 117(3): 570-579.
[18] [18] QIN Y Y, PENG Q Y, DING Y J, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941.
[19] [19] GU X H, ZHU S W, LIU S W, et al. Study of aerogel-modified recycled polyurethane nanocomposites[J]. Nanomaterials, 2023, 13(18): 2583.
[20] [20] CHEN Y M, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications[J]. Adv Mater, 2021, 33(11): e2005569.
[21] [21] SHIMIZU T, KANAMORI K, NAKANISHI K. Silicone-based organic-inorganic hybrid aerogels and xerogels[J]. Chemistry, 2017, 23(22): 5176-5187.
[22] [22] URATA S, KUO A T, MUROFUSHI H. Origin of flexibility of organic-inorganic aerogels: Insights from atomistic simulations[J]. J Phys Chem C, 2018, 122(35): 20555-20563.
[23] [23] WANG L K, FENG J Z, JIANG Y G, et al. Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area[J]. RSC Adv, 2019, 9(14): 7833-7841.
[24] [24] ZHOU X P, WANG Y F, XIAO L J, et al. Preparing carbon black aerogel quickly by chemical vapor deposition[J]. Compos Commun, 2023, 37: 101460.
[25] [25] SONG L M, FAN B B, CHEN Y Q, et al. Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption[J]. Ceram Int, 2022, 48(17): 25140-25150.
[26] [26] SONG L M, ZHANG F, CHEN Y Q, et al. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption[J]. Nanomicro Lett, 2022, 14(1): 152.
[27] [27] SU L, WANG H J, NIU M, et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel[J]. ACS Nano, 2018, 12(4): 3103-3111.
[28] [28] XU X, ZHANG Q Q, HAO M L, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(6428): 723-727.
[29] [29] BI H, CHEN I W, LIN T Q, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Adv Mater, 2015, 27(39): 5943-5949.
[30] [30] BI H, LIN T Q, XU F, et al. New graphene form of nanoporous monolith for excellent energy storage[J]. Nano Lett, 2016, 16(1): 349-354.
[31] [31] SONG L M, WU C W, ZHI Q, et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption[J]. Chem Eng J, 2023, 467: 143518.
[32] [32] MIKHALCHAN A, FAN Z, TRAN T Q, et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016, 102: 409-418.
[33] [33] ACAUAN L H, KAISER A L, WARDLE B L. Direct synthesis of carbon nanomaterials via surface activation of bulk copper[J]. Carbon, 2021, 177: 1-10.
[34] [34] SEHRAWAT M, RANI M, SHARMA S, et al. Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review[J]. Carbon, 2024, 219: 118747.
[35] [35] WANG Z, HOU Y C, HAO H Q, et al. Scalable preparation of SiC@SiO2 nanocable aerogels for broadband microwave absorption using low-cost carbon source[J]. Carbon, 2023, 211: 118092.
[36] [36] WANG Z, LIU J X, HAO H Q, et al. Microwave absorption enhancement by SiC nanowire aerogels through heat treatment-based oxidation modulation[J]. Carbon, 2024, 217:118622.
[37] [37] ABDULLAH H B, IRMAWATI R, ISMAIL I, et al. Utilization of waste engine oil for carbon nanotube aerogel production using floating catalyst chemical vapor deposition[J]. J Clean Prod, 2020, 261: 121188.
[38] [38] ALEXANDER R, KAUSHAL A, PRAKASH J, et al. Porosity control of CNT aerogel and its conversion to CNT fiber in floating catalyst chemical vapourdeposition[J]. J Porous Mater, 2023, 30(2): 507-520.
[39] [39] ALEXANDER R, KHAUSAL A, BAHADUR J, et al. Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield[J]. Carbon Trends, 2022, 9: 100211.
[40] [40] HOECKER C, SMAIL F, PICK M, et al. The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel[J]. Chem Eng J, 2017, 314: 388-395.
[41] [41] HOECKER C, SMAIL F, PICK M, et al. The dependence of CNT aerogel synthesis on sulfur-driven catalyst nucleation processes and a critical catalyst particle mass concentration[J]. Sci Rep, 2017, 7(1): 14519.
[42] [42] MOON S Y, KIM B R, PARK C W, et al. Higcrystallinity single-walled carbon nanotube aerogel growth: Understanding the real-time catalytic decomposition reaction through floating catalyst chemical vapor deposition[J]. Chem Eng J Adv, 2022, 10: 100261.
[43] [43] CHENG G M, CHANG T H, QIN Q Q, et al. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density[J]. Nano Lett, 2014, 14(2): 754-758.
[44] [44] ZEKENTES K, ROGDAKIS K. SiC nanowires: Material and devices[J]. J Phys D: Appl Phys, 2011, 44(13): 133001.
[45] [45] LU D, SU L, WANG H J, et al. Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability[J]. ACS Appl Mater Interfaces, 2019, 11(48): 45338-45344.
[46] [46] TAN R X, FAN Z Q, XIE Z Y, et al. Fabrication of large-sized high density bulk isotropic pyrocarbon materials of a special composite microstructure by fixed-bed chemical vapor deposition[J]. Carbon, 2016, 101: 439-448.
[47] [47] YIN T, JIANG B Y, SU Z A, et al. Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon[J]. N Carbon Mater, 2018, 33(4): 357-363.
[48] [48] YU S J, CHEN Z F, WANG Y, et al. Preparation and thermal insulation analysis of SiCw-SiC foam with hollow skeletons via carbon foam template CVI method[J]. Mater Charact, 2017, 134: 296-301.
[49] [49] LI Y L, KINLOCH I A, WINDLE A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668): 276-278.
[50] [50] HOECKER C, SMAIL F, BAJADA M, et al. Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis[J]. Carbon, 2016, 96: 116-124.
[51] [51] STALLARD J C, TAN W, SMAIL F R, et al. The mechanical and electrical properties of direct-spun carbon nanotube mats[J]. Extreme Mech Lett, 2018, 21: 65-75.
[52] [52] HAN W Q, BRUTCHEY R, TILLEY T D, et al. Activated boron nitride derived from activated carbon[J]. Nano Lett, 2004, 4(1): 173-176.
[53] [53] ROUSSEAS M, GOLDSTEIN A P, MICKELSON W, et al. Synthesis of highly crystalline sp2-bonded boron nitride aerogels[J]. ACS Nano, 2013, 7(10): 8540-8546.
[54] [54] SONG Y X, LI B, YANG S W, et al. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition[J]. Sci Rep, 2015, 5: 10337.
[55] [55] KUTTY R G, SREEJITH S, KONG X H, et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake[J]. Nano Res, 2018, 11(12): 6325-6335.
[56] [56] LI B B, YUAN X S, GAO Y, et al. A novel SiC nanowire aerogel consisted of ultra long SiC nanowires[J]. Mater Res Express, 2019, 6(4): 045030.
[57] [57] SONG L M, CHEN Y Q, GAO Q C, et al. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel[J]. Compos Part A Appl Sci Manuf, 2022, 158: 106980.
[58] [58] ZHANG Q Q, XU X, LIN D, et al. Hyperbolically patterned 3D graphene metamaterial with negative poisson's ratio and superelasticity[J]. Adv Mater, 2016, 28(11): 2229-2237.
Get Citation
Copy Citation Text
ZHAO Kongli, SUN Zhengyang, FENG Junzong, JIANG Yonggang, LI Liangjun, HU Yijie, FENG Jian. Research Progress on Aerogels Prepared by Chemical Vapor Deposition[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3896
Category:
Received: Jul. 4, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: