Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3896(2024)

Research Progress on Aerogels Prepared by Chemical Vapor Deposition

ZHAO Kongli... SUN Zhengyang, FENG Junzong, JIANG Yonggang, LI Liangjun, HU Yijie and FENG Jian |Show fewer author(s)
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    References(56)

    [1] [1] GUO J R, FU S B, DENG Y P, et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions[J]. Nature, 2022, 606(7916): 909-916.

    [2] [2] JIN R Z, ZHOU Z H, LIU J, et al. Aerogels for thermal protection and their application in aerospace[J]. Gels, 2023, 9(8): 606.

    [3] [3] BERARDI U, SPRENGARD C. An overview of and introduction to current researches on super insulating materials for high-performance buildings[J]. Energy Build, 2020, 214: 109890.

    [4] [4] SHEN J, ZHANG X X. Recent progress and applications of aerogels in China[J]. J Sol Gel Sci Technol, 2023, 106(2): 290-318.

    [5] [5] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Acc Chem Res, 2016, 49(1): 96-105.

    [7] [7] SUZUKI Y, BERGER M H, D'ELIA D, et al. Synthesis and microstructure of a novel tio2 aerogel-TiO2 nanowire composite[J]. Nano, 2008, 3(5): 373-379.

    [8] [8] LIU F Q, JIANG Y G, PENG F, et al. Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1 800 ℃[J]. Chem Eng J, 2023, 461: 141721.

    [9] [9] PENG F, JIANG Y G, FENG J, et al. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1 500 ℃[J]. Chem Eng J, 2021, 411: 128402.

    [10] [10] LI J X, AHMAD Z, CHEN J J, et al. Fabrication of SiC nanofiber aerogel felt with high-temperature thermal insulation performance[J]. J Eur Ceram Soc, 2024, 44(4): 1923-1931.

    [11] [11] LI G Y, CHAI Y S, ZHANG X T. Laser ablation-induced boron nitride aerogels with intrinsic photoluminescence for efficient information encryption[J]. Adv Funct Materials, 2024, 34(23): 2314724.

    [12] [12] LUO Y, LI K, CHEN Y T, et al. Single-atom and hierarchical-pore aerogel confinement strategy for low-platinum fuel cells[J]. Adv Mater, 2023, 35(31): e2300624.

    [13] [13] LUO Y, YU L F, MEN J, et al. Ultralow thermal conductivity of single-atom doped carbon aerogel synthesized with a facile ambient-pressure-drying strategy[J]. Carbon, 2023, 213: 118167.

    [14] [14] MEN J, FENG J Z, JIANG Y G, et al. Synthesis of environmentally friendly nanoporous monolithic carbon aerogels via ambient pressure drying for high-temperature thermal insulators[J]. ACS Appl Nano Mater, 2024, 7(7): 7132-7141.

    [16] [16] WU X D, LI W, SHAO G F, et al. Investigation on textural and structural evolution of the novel crack-free equimolar Al2O3-SiO2- TiO2 ternary aerogel during thermal treatment[J]. Ceram Int, 2017, 43(5): 4188-4196.

    [17] [17] YAO N, CAO S L, YEUNG K L. Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures[J]. Microporous Mesoporous Mater, 2009, 117(3): 570-579.

    [18] [18] QIN Y Y, PENG Q Y, DING Y J, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941.

    [19] [19] GU X H, ZHU S W, LIU S W, et al. Study of aerogel-modified recycled polyurethane nanocomposites[J]. Nanomaterials, 2023, 13(18): 2583.

    [20] [20] CHEN Y M, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications[J]. Adv Mater, 2021, 33(11): e2005569.

    [21] [21] SHIMIZU T, KANAMORI K, NAKANISHI K. Silicone-based organic-inorganic hybrid aerogels and xerogels[J]. Chemistry, 2017, 23(22): 5176-5187.

    [22] [22] URATA S, KUO A T, MUROFUSHI H. Origin of flexibility of organic-inorganic aerogels: Insights from atomistic simulations[J]. J Phys Chem C, 2018, 122(35): 20555-20563.

    [23] [23] WANG L K, FENG J Z, JIANG Y G, et al. Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area[J]. RSC Adv, 2019, 9(14): 7833-7841.

    [24] [24] ZHOU X P, WANG Y F, XIAO L J, et al. Preparing carbon black aerogel quickly by chemical vapor deposition[J]. Compos Commun, 2023, 37: 101460.

    [25] [25] SONG L M, FAN B B, CHEN Y Q, et al. Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption[J]. Ceram Int, 2022, 48(17): 25140-25150.

    [26] [26] SONG L M, ZHANG F, CHEN Y Q, et al. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption[J]. Nanomicro Lett, 2022, 14(1): 152.

    [27] [27] SU L, WANG H J, NIU M, et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel[J]. ACS Nano, 2018, 12(4): 3103-3111.

    [28] [28] XU X, ZHANG Q Q, HAO M L, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(6428): 723-727.

    [29] [29] BI H, CHEN I W, LIN T Q, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Adv Mater, 2015, 27(39): 5943-5949.

    [30] [30] BI H, LIN T Q, XU F, et al. New graphene form of nanoporous monolith for excellent energy storage[J]. Nano Lett, 2016, 16(1): 349-354.

    [31] [31] SONG L M, WU C W, ZHI Q, et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption[J]. Chem Eng J, 2023, 467: 143518.

    [32] [32] MIKHALCHAN A, FAN Z, TRAN T Q, et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method[J]. Carbon, 2016, 102: 409-418.

    [33] [33] ACAUAN L H, KAISER A L, WARDLE B L. Direct synthesis of carbon nanomaterials via surface activation of bulk copper[J]. Carbon, 2021, 177: 1-10.

    [34] [34] SEHRAWAT M, RANI M, SHARMA S, et al. Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review[J]. Carbon, 2024, 219: 118747.

    [35] [35] WANG Z, HOU Y C, HAO H Q, et al. Scalable preparation of SiC@SiO2 nanocable aerogels for broadband microwave absorption using low-cost carbon source[J]. Carbon, 2023, 211: 118092.

    [36] [36] WANG Z, LIU J X, HAO H Q, et al. Microwave absorption enhancement by SiC nanowire aerogels through heat treatment-based oxidation modulation[J]. Carbon, 2024, 217:118622.

    [37] [37] ABDULLAH H B, IRMAWATI R, ISMAIL I, et al. Utilization of waste engine oil for carbon nanotube aerogel production using floating catalyst chemical vapor deposition[J]. J Clean Prod, 2020, 261: 121188.

    [38] [38] ALEXANDER R, KAUSHAL A, PRAKASH J, et al. Porosity control of CNT aerogel and its conversion to CNT fiber in floating catalyst chemical vapourdeposition[J]. J Porous Mater, 2023, 30(2): 507-520.

    [39] [39] ALEXANDER R, KHAUSAL A, BAHADUR J, et al. Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield[J]. Carbon Trends, 2022, 9: 100211.

    [40] [40] HOECKER C, SMAIL F, PICK M, et al. The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel[J]. Chem Eng J, 2017, 314: 388-395.

    [41] [41] HOECKER C, SMAIL F, PICK M, et al. The dependence of CNT aerogel synthesis on sulfur-driven catalyst nucleation processes and a critical catalyst particle mass concentration[J]. Sci Rep, 2017, 7(1): 14519.

    [42] [42] MOON S Y, KIM B R, PARK C W, et al. Higcrystallinity single-walled carbon nanotube aerogel growth: Understanding the real-time catalytic decomposition reaction through floating catalyst chemical vapor deposition[J]. Chem Eng J Adv, 2022, 10: 100261.

    [43] [43] CHENG G M, CHANG T H, QIN Q Q, et al. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density[J]. Nano Lett, 2014, 14(2): 754-758.

    [44] [44] ZEKENTES K, ROGDAKIS K. SiC nanowires: Material and devices[J]. J Phys D: Appl Phys, 2011, 44(13): 133001.

    [45] [45] LU D, SU L, WANG H J, et al. Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability[J]. ACS Appl Mater Interfaces, 2019, 11(48): 45338-45344.

    [46] [46] TAN R X, FAN Z Q, XIE Z Y, et al. Fabrication of large-sized high density bulk isotropic pyrocarbon materials of a special composite microstructure by fixed-bed chemical vapor deposition[J]. Carbon, 2016, 101: 439-448.

    [47] [47] YIN T, JIANG B Y, SU Z A, et al. Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon[J]. N Carbon Mater, 2018, 33(4): 357-363.

    [48] [48] YU S J, CHEN Z F, WANG Y, et al. Preparation and thermal insulation analysis of SiCw-SiC foam with hollow skeletons via carbon foam template CVI method[J]. Mater Charact, 2017, 134: 296-301.

    [49] [49] LI Y L, KINLOCH I A, WINDLE A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668): 276-278.

    [50] [50] HOECKER C, SMAIL F, BAJADA M, et al. Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis[J]. Carbon, 2016, 96: 116-124.

    [51] [51] STALLARD J C, TAN W, SMAIL F R, et al. The mechanical and electrical properties of direct-spun carbon nanotube mats[J]. Extreme Mech Lett, 2018, 21: 65-75.

    [52] [52] HAN W Q, BRUTCHEY R, TILLEY T D, et al. Activated boron nitride derived from activated carbon[J]. Nano Lett, 2004, 4(1): 173-176.

    [53] [53] ROUSSEAS M, GOLDSTEIN A P, MICKELSON W, et al. Synthesis of highly crystalline sp2-bonded boron nitride aerogels[J]. ACS Nano, 2013, 7(10): 8540-8546.

    [54] [54] SONG Y X, LI B, YANG S W, et al. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition[J]. Sci Rep, 2015, 5: 10337.

    [55] [55] KUTTY R G, SREEJITH S, KONG X H, et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake[J]. Nano Res, 2018, 11(12): 6325-6335.

    [56] [56] LI B B, YUAN X S, GAO Y, et al. A novel SiC nanowire aerogel consisted of ultra long SiC nanowires[J]. Mater Res Express, 2019, 6(4): 045030.

    [57] [57] SONG L M, CHEN Y Q, GAO Q C, et al. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel[J]. Compos Part A Appl Sci Manuf, 2022, 158: 106980.

    [58] [58] ZHANG Q Q, XU X, LIN D, et al. Hyperbolically patterned 3D graphene metamaterial with negative poisson's ratio and superelasticity[J]. Adv Mater, 2016, 28(11): 2229-2237.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Kongli, SUN Zhengyang, FENG Junzong, JIANG Yonggang, LI Liangjun, HU Yijie, FENG Jian. Research Progress on Aerogels Prepared by Chemical Vapor Deposition[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3896

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jan. 2, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240447

    Topics