International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 35002(2024)

Triboelectric ‘electrostatic tweezers’ for manipulating droplets on lubricated slippery surfaces prepared by femtosecond laser processing

Jiale Yong... Xinlei Li, Youdi Hu, Yubin Peng, Zilong Cheng, Tianyu Xu, Chaowei Wang* and Dong Wu |Show fewer author(s)
Author Affiliations
  • CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027,People’s Republic of China
  • show less
    References(74)

    [1] [1] Hajji I, Serra M, Geremie L, Ferrante I, Renault R, Viovy J L,Descroix S and Ferraro D 2020 Droplet microfluidic platform for fast and continuous-flow RT-qPCR analysis devoted to cancer diagnosis application Sens. Actuators B 303 127171

    [2] [2] Song J, Cheng W F, Nie M T, He X K, Nam W, Cheng J T and Zhou W 2020 Partial Leidenfrost evaporation-assisted ultrasensitive surface-enhanced Raman spectroscopy in a Janus water droplet on hierarchical plasmonic micro-/nanostructures ACS Nano 14 9521–31

    [3] [3] Zhang S P et al 2018 Digital acoustofluidics enables contactless and programmable liquid handling Nat.Commun. 9 2928

    [4] [4] Abdelgawad M and Wheeler A R 2009 The digital revolution:a new paradigm for microfluidics Adv. Mater. 21 920–5

    [5] [5] Seemann R, Brinkmann M, Pfohl T and Herminghaus S 2012 Droplet based microfluidics Rep. Prog. Phys. 75 016601

    [6] [6] Wu D et al 2020 High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays Adv.Mater. 32 2005039

    [7] [7] Bai X, Yang Q, Fang Y, Yong J L, Bai Y K, Zhang J W, Hou X and Chen F 2020 Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation Chem. Eng. J. 400 125930

    [8] [8] Jiang M N et al 2022 Inhibiting the Leidenfrost effect above 1,000 ?C for sustained thermal cooling Nature 601 568–72

    [9] [9] Vorobyev A Y and Guo C L 2009 Metal pumps liquid uphill Appl. Phys. Lett. 94 224102

    [10] [10] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y,Zhai J and Jiang L 2010 Directional water collection on wetted spider silk Nature 463 640–3

    [11] [11] Zhang S N, Huang J Y, Chen Z and Lai Y K 2017 Bioinspired special wettability surfaces: from fundamental research to water harvesting applications Small 13 1602992

    [12] [12] Dong Z C, Ma J and Jiang L 2013 Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles ACS Nano 7 10371–9

    [13] [13] Jokinen V, Sainiemi L and Franssila S 2008 Complex droplets on chemically modified silicon nanograss Adv. Mater.20 3453–6

    [14] [14] Xu J K, Xiu S, Lian Z X, Yu H D and Cao J J 2022 Bioinspired materials for droplet manipulation: principles,methods and applications Droplet 1 11–37

    [15] [15] Tang Q, Liu X F, Cui X X, Su Z P, Zheng H, Tang J and Joo S W 2021 Contactless discharge-driven droplet motion on a nonslippery polymer surface Langmuir 37 14697–702

    [16] [16] Hernández S C et al 2013 Chemical gradients on graphene to drive droplet motion ACS Nano 7 4746–55

    [17] [17] Yu C M, Cao M Y, Dong Z C, Wang J M, Li K and Jiang L 2016 Spontaneous and directional transportation of gas bubbles on superhydrophobic cones Adv. Funct. Mater.26 3236–43

    [18] [18] Ma H Y, Cao M Y, Zhang C H, Bei Z L, Li K, Yu C M and Jiang L 2018 Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments Adv. Funct. Mater. 28 1705091

    [19] [19] Xiao X, Zhang C H, Ma H Y, Zhang Y H, Liu G L, Cao M Y,Yu C M and Jiang L 2019 Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment ACS Nano 13 4083–90

    [20] [20] Sun Q et al 2019 Surface charge printing for programmed droplet transport Nat. Mater. 18 936–41

    [21] [21] Yong J L, Peng Y B, Wang X W, Li J W, Hu Y L, Chu J R and Wu D 2023 Self-driving underwater “aerofluidics” Adv. Sci.10 2301175

    [22] [22] Demir?rs A F, Aykut S, Ganzeboom S, Meier Y A and Poloni E 2021 Programmable droplet manipulation and wetting with soft magnetic carpets Proc. Natl Acad. Sci.USA 118 e2111291118

    [23] [23] Han K and Yong K 2021 Overcoming limitations in surface geometry-driven bubble transport: bidirectional and unrestricted movement of an underwater gas bubble using a magnetocontrollable nonwetting surface Adv. Funct. Mater.31 2101970

    [24] [24] Wang J, Zhu Z X, Liu P F, Yi S Z, Peng L L, Yang Z L,Tian X L and Jiang L L 2021 Magneto-responsive shutter for on-demand droplet manipulation Adv. Sci. 8 2103182

    [25] [25] Jin Y K, Wu C Y, Sun P C, Wang M M, Cui M M, Zhang C and Wang Z K 2022 Electrification of water: from basics to applications Droplet 1 92–109

    [26] [26] Li W, Tang X and Wang L Q 2020 Photopyroelectric microfluidics Sci. Adv. 6 eabc1693

    [27] [27] Wang F, Liu M J, Liu C, Zhao Q L, Wang T, Wang Z K and Du X M 2022 Light-induced charged slippery surfaces Sci.Adv. 8 eabp9369

    [28] [28] Yuan Z C, Lu C G, Liu C, Bai X G, Zhao L, Feng S L and Liu Y H 2023 Ultrasonic tweezer for multifunctional droplet manipulation Sci. Adv. 9 eadg2352

    [29] [29] Hong X, Gao X F and Jiang L 2007 Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet J. Am.Chem. Soc. 129 1478–9

    [30] [30] Zhu S W et al 2020 High performance bubble manipulation on ferrofluid-infused laser-ablated microstructured surfaces Nano Lett. 20 5513–21

    [31] [31] Jiang S J et al 2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer Nano Lett.20 7519–29

    [32] [32] Ben S, Ning Y Z, Zhao Z H, Li Q, Zhang X D, Jiang L and Liu K S 2022 Underwater directional and continuous manipulation of gas bubbles on superaerophobic magnetically responsive microcilia array Adv. Funct. Mater.32 2113374

    [33] [33] Shao K X, Jiang S J, Hu Y L, Zhang Y Y, Li C Z, Zhang Y X,Li J W, Wu D and Chu J R 2022 Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport Adv. Funct. Mater.32 2205831

    [34] [34] van der Heyden F H J, Stein D and Dekker C 2005 Streaming currents in a single nanofluidic channel Phys. Rev. Lett.95 116104

    [35] [35] van der Heyden F H J, Bonthuis D J, Stein D, Meyer C and Dekker C 2006 Electrokinetic energy conversion efficiency in nanofluidic channels Nano Lett.6 2232–7

    [36] [36] Dai H Y, Gao C, Sun J H, Li C X, Li N, Wu L, Dong Z C and Jiang L 2019 Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface Adv. Mater. 31 1905449

    [37] [37] Jin Y K, Xu W H, Zhang H H, Li R R, Sun J, Yang S Y,Liu M J, Mao H Y and Wang Z K 2022 Electrostatic tweezer for droplet manipulation Proc. Natl Acad. Sci. USA 119 e2105459119

    [38] [38] Wang D H et al 2020 Design of robust superhydrophobic surfaces Nature 582 55–59

    [39] [39] Yong J L, Huo J L, Yang Q, Chen F, Fang Y, Wu X J, Liu L,Lu X Y, Zhang J Z and Hou X 2018 Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation Adv. Mater. Interfaces5 1701479

    [40] [40] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D,Grinthal A and Aizenberg J 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity Nature477 443–7

    [41] [41] Yong J L, Chen F, Yang Q, Fang Y, Huo J L, Zhang J Z and Hou X 2017 Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing Adv. Mater. Interfaces4 1700552

    [42] [42] Cheng Y et al 2023 Heart valve-inspired self-lubricating anticoagulant surfaces Chem. Eng. J. 474 145358

    [43] [43] Zhang J L, Yang Q, Cheng Y, Fang Z, Hou X and Chen F 2022 Slippery liquid-infused porous surface on metal material with excellent ice resistance fabricated by femtosecond Bessel laser Adv. Eng. Mater. 24 2101738

    [44] [44] Liang J, Shan C, Wang H, Hu T, Yang Q, Li H Y, Hou X and Chen F 2022 Highly stable and transparent slippery surface on silica glass fabricated by femtosecond laser Adv. Eng.Mater. 24 2200708

    [45] [45] Wang Q, Zhang Y C, Sun H B, Zou W K, Miao N D, Liu S L,Jiao Y H, Liu Y Q and Han D D 2023 Laser-induced graphene for slippery photothermal de-icing surfaces IEEE Photonics Technol. Lett. 35 1167–70

    [46] [46] Han D D, Zhang Y L, Chen Z D, Li J C, Ma J N, Mao J W, Zhou H and Sun H B 2023 Carnivorous plants inspired shape-morphing slippery surfaces Opto-Electron. Adv.6 210163

    [47] [47] Jiao Z Z, Zhou H, Han X C, Han D D and Zhang Y L 2023 Photothermal responsive slippery surfaces based on laser-structured graphene@PVDF composites J. Colloid Interface Sci. 629 582–92

    [48] [48] Yong J L, Yang Q, Hou X and Chen F 2022 Nature-inspired superwettability achieved by femtosecond lasers Ultrafast Sci. 2022 9895418

    [49] [49] Yong J L, Yang Q, Huo J L, Hou X and Chen F 2022 Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels(<100 μm) for bubble/gas manipulation Int. J. Extrem.Manuf. 4 015002

    [50] [50] Zhang Y X, Wu D, Zhang Y C, Bian Y C, Wang C W, Li J W, Chu J R and Hu Y L 2023 Femtosecond laser direct writing of functional stimulus-responsive structures and applications Int. J. Extrem. Manuf. 5 042012

    [51] [51] Zhu L, Zhang Y L and Sun H B 2021 Miniaturising artificial compound eyes based on advanced micronanofabrication techniques Light 2 84–100

    [52] [52] Zhang D S, Li X Z, Fu Y, Yao Q H, Li Z G and Sugioka K 2022 Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS Opto-Electron. Adv. 5 210066

    [53] [53] Mao J W, Han D D, Zhou H, Sun H B and Zhang Y L 2023 Bioinspired superhydrophobic swimming robots with embedded microfluidic networks and photothermal switch for controllable Marangoni propulsion Adv. Funct. Mater. 33 2208677

    [54] [54] Wang H, Zhang Y L, Han D D, Wang W and Sun H B 2021 Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation PhotoniX 2 17

    [55] [55] Cassie A B D and Baxter S 1944 Wettability of porous surfaces Trans. Faraday Soc. 40 546–51

    [56] [56] Wang S and Jiang L 2007 Definition of superhydrophobic states Adv. Mater. 19 3423–4

    [57] [57] Yong J L, Chen F, Yang Q, Huo J L and Hou X 2017 Superoleophobic surfaces Chem. Soc. Rev. 46 4168–217

    [58] [58] Li M J, Yang T Z, Yang Q, Fang Z, Bian H, Zhang C J, Hou X and Chen F 2022 Bioinspired anti-fogging and anti-fouling artificial compound eyes Adv. Opt. Mater. 10 2200861

    [59] [59] Yu C M, Zhu X B, Li K, Cao M Y and Jiang L 2017 Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface Adv. Funct. Mater. 27 1701605

    [60] [60] Ristenpart W D, Bird J C, Belmonte A, Dollar F and Stone H A 2009 Non-coalescence of oppositely charged drops Nature 461 377–80

    [61] [61] Li N, Wu L, Yu C L, Dai H Y, Wang T, Dong Z C and Jiang L 2018 Ballistic jumping drops on superhydrophobic surfaces via electrostatic manipulation Adv. Mater. 30 1703838

    [62] [62] Han X, Tan S D, Jin R Y, Jiang L and Heng L P 2023 Noncontact charge shielding knife for liquid microfluidics J. Am. Chem. Soc. 145 6420–7

    [63] [63] Wang F X, Guo F Z, Wang Z Q, He H L, Sun Y, Liang W Y and Yang B 2022 Surface charge density gradient printing to drive droplet transport: a numerical study Langmuir38 13697–706

    [64] [64] Link D R, Grasland-mongrain E, Duri A, Sarrazin F,Cheng Z D, Cristobal G, Marquez M and Weitz D A 2006 Electric control of droplets in microfluidic devices Angew.Chem., Int. Ed. 45 2556–60

    [65] [65] Jin Y K et al 2023 Charge-powered electrotaxis for versatile droplet manipulation ACS Nano 17 10713–20

    [66] [66] Xu W H, Jin Y K, Li W B, Song Y X, Gao S W, Zhang B P, Wang L L, Cui M M, Yan X T and Wang Z K 2022 Triboelectric wetting for continuous droplet transport Sci.Adv. 8 eade2085

    [67] [67] Furmidge C G L 1962 Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention J. Colloid Sci. 17 309–24

    [68] [68] Cao M Y, Jin X, Peng Y, Yu C M, Li K, Liu K S and Jiang L 2017 Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcillia Adv. Mater. 29 1606869

    [69] [69] Daniel D, Timonen J V I, Li R P, Velling S J and Aizenberg J 2017 Oleoplaning droplets on lubricated surfaces Nat. Phys.13 1020–5

    [70] [70] Tang X, Li W and Wang L Q 2021 Furcated droplet motility on crystalline surfaces Nat. Nanotechnol. 16 1106–12

    [71] [71] Keiser A, Baumli P, Vollmer D and Quéré D 2020 Universality of friction laws on liquid-infused materials Phys. Rev. Fluids 5 014005

    [72] [72] Yan W H, Xue S Y, Xiang B, Zhao X R, Zhang W, Mu P and Li J 2023 Recent advances of slippery liquid-infused porous surfaces with anti-corrosion Chem. Commun. 59 2182–98

    [73] [73] Lv P, Zhang Y L, Han D D and Sun H B 2021 Directional droplet transport on functional surfaces with superwettabilities Adv. Mater. Interfaces8 2100043

    [74] [74] Zhang X D, Ben S, Zhao Z H, Ning Y Z, Li Q, Long Z Y,Yu C M, Liu K S and Jiang L 2023 Lossless and directional transport of droplets on multi-bioinspired superwetting V-shape rails Adv. Funct. Mater. 33 2212217

    Tools

    Get Citation

    Copy Citation Text

    Jiale Yong, Xinlei Li, Youdi Hu, Yubin Peng, Zilong Cheng, Tianyu Xu, Chaowei Wang, Dong Wu. Triboelectric ‘electrostatic tweezers’ for manipulating droplets on lubricated slippery surfaces prepared by femtosecond laser processing[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 35002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 6, 2023

    Accepted: --

    Published Online: Sep. 11, 2024

    The Author Email: Wang Chaowei (chaoweiw@ustc.edu.cn)

    DOI:10.1088/2631-7990/ad2cdf

    Topics