Matter and Radiation at Extremes, Volume. 2, Issue 1, 22(2017)
Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model
[1] [1] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004), 339.
[2] [2] S.W. Haan, J.D. Lindl, D.A. Callahan, D.S. Clark, J.D. Salmonson, et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas 18 (2011), 051001.
[3] [3] M. Vandenboomgaerde, J. Bastian, A. Casner, D. Galmiche, J.-P. Jadaud, et al., Prolate-spheroid (“Rugby-Shaped”) hohlraum for inertial confinement fusion, Phys. Rev. Lett. 99 (2007), 065004.
[4] [4] P. Amendt, C. Cerjan, D.E. Hinkel, J.L. Milovich, H.-S. Park, et al., Rugby-like hohlraum experimental design for demonstrating X-ray drive enhancement, Phys. Plasmas 15 (2008), 012702.
[5] [5] K. Lan, J. Liu, X.T. He, W.D. Zheng, D.X. Lai, High flux symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-tocapsule radius ratio of 5.14, Phys. Plasmas 21 (2014), 010704.
[6] [6] K. Lan, J. Liu, Z.C. Li, X.F. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extrem. 1 (2016) 8-27.
[7] [7] R.H.H. Scott, D.S. Clark, D.K. Bradley, D.A. Callahan, M.J. Edwards, et al., Numerical modeling of the sensitivity of X-ray driven implosion to low-mode flux asymmetries, Phys. Rev. Lett. 110 (2013), 075001.
[8] [8] O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343-348.
[9] [9] T. D€oppner, D.A. Callahan, O.A. Hurricane, D.E. Hinke, T. Ma, et al., Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility, Phys. Rev. Lett. 115 (2015), 055001.
[10] [10] S.A. MacLaren, M.B. Schneider, K. Widmann, J.H. Hammer, B.E. Yoxall, et al., Novel characterization of capsule X-ray drive at the National Ignition Facility, Phys. Rev. Lett. 112 (2014), 105003.
[11] [11] M.B. Schneider, S.A.MacLaren, K.Widmann, N.B.Meezan, J.H. Hammer, et al., The size and structure of the laser entrance hole in gas-filled hohlraum at the National Ignition Facility, Phys. Plasmas 22 (2015), 122705.
[12] [12] O.S. Jones, C.J. Cerjan, M.M. Marinak, J.L. Milovich, H.F. Robey, et al., A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments, Phys. Plasmas 19 (2012), 056315.
[13] [13] S.H. Glenzer, D.A. Callahan, A.J. MacKinnon, J.L. Kline, G. Grim, et al., Cryogenic thermonuclear fuel implosions on the National Ignition Facility, Phys. Plasmas 19 (2012), 056318.
[14] [14] W.Y. Huo, G.L. Ren, K. Lan, X. Li, C.S. Wu, et al., Simulation study of hohlraum experiments on SGIII-prototype laser facility, Phys. Plasmas 17 (2010), 123114.
[15] [15] W.Y. Huo, Z.C. Li, Y.H. Chen, X.F. Xie, J. Liu, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016), 025002.
[16] [16] J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, et al., Hohlraum energetics scaling to 520 TW on the National Ignition Facility, Phys. Plasmas 20 (2013), 056314.
[17] [17] S. Le Pape, L. Divol, L. Berzak Hopkins, A. MacKinnon, N.B. Meezan, et al., Observation of a reflected shock in indirectly driven spherical implosion at the National Ignition Facility, Phys. Rev. Lett. 112 (2014), 225002.
[18] [18] A.J. MacKinnon, N.B. Meezan, J.S. Ross, T. D€oppner, A. Pak, et al., High density carbon ablator experiments on the National Ignition Facility, Phys. Plasmas 21 (2014), 056318.
[19] [19] L.F. Berzak Hopkins, S. Le Pape, L. Divol, N.B. Meezan, A.J. Mackinnon, et al., Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators, Phys. Plasmas 22 (2015), 056318.
[20] [20] L.F. Berzak Hopkins, N.B. Meezan, S. Le Pape, L. Divol, A.J. MacKinnon, et al., First high-convergence cryogenic implosion in a near-vacuum hohlraum, Phys. Rev. Lett. 114 (2015), 175001.
[21] [21] X. Li, K. Lan, X. Meng, X.T. He, D.X. Lai, et al., Study on AutUtAu sandwich hohlraum wall for ignition targets, Laser Part. Beams 28 (2010), 10.1017.
[22] [22] J.S. Ross, D. Ho, J. Milovich, T. D€oppner, J. McNaey, et al., High-density carbon capsule experiments on the National Ignition Facility, Phys. Rev. E 91 (2015), 021101.
[23] [23] J. Edwards, Progress and Challenges in X-ray Drive ICF on the NIF, Report on the Fusion Power Associates, 2014.
[24] [24] J.D. Moody, D.A. Callahan, D.E. Hinkel, P.A. Amendt, K.L. Baker, et al., Progress in hohlraum physics for the National Ignition Facility, Phys. Plasmas 21 (2014), 056317.
Get Citation
Copy Citation Text
Guoli Ren, Jie Liu, Wenyi Huo, Ke Lan. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model[J]. Matter and Radiation at Extremes, 2017, 2(1): 22
Category: Research Article
Received: Sep. 8, 2016
Accepted: Dec. 3, 2016
Published Online: Jan. 17, 2018
The Author Email: Ren Guoli (ren_guoli@iapcm.ac.cn)