Optics and Precision Engineering, Volume. 31, Issue 14, 2080(2023)

Generate adversarial network for super-resolution reconstruction of remote sensing images by fusing edge enhancement and non-local modules

Jie LIU1,*... Ruo QI1 and Ke HAN2 |Show fewer author(s)
Author Affiliations
  • 1College of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin50080, China
  • 2School of Computer and Information Engineering, Harbin University of Commerce, Harbin15008, China
  • show less
    References(27)

    [1] [1] 1孙家抦, 舒宁, 关泽群. 遥感原理、方法和应用[M]. 北京: 测绘出版社, 1997.SUNJ B, SHUN, GUANZ Q. Principle, Method and Application of Remote Sensing[M]. Beijing: Sino Maps Press, 1997.(in Chinese)

    [2] [2] 2柏宇阳. 基于卷积神经网络的遥感图像超分辨重建[D]. 哈尔滨: 黑龙江大学, 2021.BAIY Y. Super-Resolution Reconstruction of Remote Sensing Image Based on Convolutional Neural Network[D]. Harbin: Helongjiang University, 2021. (in Chinese)

    [3] [3] 3唐艳秋, 潘泓, 朱亚平, 等. 图像超分辨率重建研究综述[J]. 电子学报, 2020, 48(7):1407-1420. doi: 10.3969/j.issn.0372-2112.2020.07.022TANGY Q, PANH, ZHUY P, et al. A survey of image super-resolution reconstruction[J]. Acta Electronica Sinica, 2020, 48(7):1407-1420.(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.07.022

    [4] [4] 4熊鹰飞. 基于生成对抗网络的多源跨区域遥感图像超分辨[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2021.XIONGY F. Super-Resolution of Multi-Source and Cross-Regional Remote Sensing Images Based on Generative Countermeasure Network[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2021. (in Chinese)

    [5] [5] 5邵旻昊. 基于深度学习的遥感图像超分辨率重建算法研究[D]. 西安: 西安电子科技大学, 2021.SHAOM H. Research on Super-Resolution Reconstruction Algorithm of Remote Sensing Image Based on Deep Learning[D]. Xi'an: Xidian University, 2021. (in Chinese)

    [6] C DONG, C C LOY, K M HE et al. Learning a Deep Convolutional Network for Image Super-Resolution. Computer Vision - ECCV 2014, 184-199(2014).

    [7] [7] 7蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1):142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1):142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142

    [8] [8] 8刘雪岩, 许聿达, 雷建昕, 等. 基于视差放大与超分辨率的三维光场腹腔镜标定[J]. 光学 精密工程, 2022, 30(5):510-517. doi: 10.37188/OPE.2021.0332LIUX Y, XUY D, LEIJ X, et al. Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J]. Opt. Precision Eng., 2022, 30(5):510-517.(in Chinese). doi: 10.37188/OPE.2021.0332

    [9] [9] 9耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12):1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12):1487-1498.(in Chinese). doi: 10.37188/OPE.20223012.1487

    [10] X T WANG, K YU, S X WU et al. ESRGAN Enhanced Super-Resolution Generative Adversarial Networks. Lecture Notes in Computer Science, 63-79(2019).

    [11] X Z JI, Y CAO, Y TAI et al. Real-World Super-Resolution via Kernel Estimation and Noise Injection, 1914-1923(14).

    [12] Y Y XU, W LUO, A N HU et al. TE-SAGAN: an improved generative adversarial network for remote sensing super-resolution images. Remote Sensing, 14, 2425(2022).

    [13] X T WANG, L B XIE, C DONG et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data, 1905-1914(11).

    [14] K ZHANG, J Y LIANG, L VAN GOOL et al. Designing a Practical Degradation Model for Deep Blind Image Super-Resolution, 4771-4780(10).

    [15] C LEDIG, L THEIS, F HUSZÁR et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, 105-114(21).

    [16] E SCHÖNFELD, B SCHIELE, A KHOREVA. A U-Net Based Discriminator for Generative Adversarial Networks, 8204-8213(13).

    [17] L XU, J S J REN, Q YAN et al. Deep edge-aware filters. 32nd International Conference on Machine Learning, 2, 1669-1678(2015).

    [18] S F LIU, J S PAN, M H YANG. Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network. Computer Vision - ECCV 2016, 560-576(2016).

    [19] B KAMGAR-PARSI, B KAMGAR-PARSI, A ROSENFELD. Optimally isotropic Laplacian operator. IEEE Transactions on Image Processing, 8, 1467-1472(1999).

    [20] W S LAI, J B HUANG, N AHUJA et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution, 5835-5843(21).

    [21] H KIM et al. Enhanced Deep Residual Networks for Single Image Super-Resolution, 1132-1140(21).

    [22] A BUADES, B COLL, J M MOREL. A Non-Local Algorithm for Image Denoising, 60-65(20).

    [23] K DABOV, V KATKOVNIK et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 16, 2080-2095(2007).

    [24] X L WANG, R GIRSHICK, A GUPTA et al. Non-Local Neural Networks, 7794-7803(18).

    [25] T DAI, J R CAI, Y B ZHANG et al. Second-Order Attention Network for Single Image Super-Resolution, 11057-11066(15).

    [26] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    [27] F YUAN, L F HUANG, Y YAO. An Improved PSNR Algorithm for Objective Video Quality Evaluation, 376-380(26).

    Tools

    Get Citation

    Copy Citation Text

    Jie LIU, Ruo QI, Ke HAN. Generate adversarial network for super-resolution reconstruction of remote sensing images by fusing edge enhancement and non-local modules[J]. Optics and Precision Engineering, 2023, 31(14): 2080

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 30, 2022

    Accepted: --

    Published Online: Aug. 2, 2023

    The Author Email: LIU Jie (liujie@hrbust.edu.cn)

    DOI:10.37188/OPE.20233114.2080

    Topics