Journal of Innovative Optical Health Sciences, Volume. 17, Issue 5, 2450009(2024)

Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network

Caizhong Guan1...1,2,2,">">, Bin He1,1,">, Hongting Zhang3,3,">, Shangpan Yang1,1,">, Yang Xu1,1,">, Honglian Xiong1,1,">, Yaguang Zeng1,1,">, Mingyi Wang1,*, and Xunbin Wei4,4,5,5,6,67,">">">** |Show fewer author(s)
Author Affiliations
  • 1Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent, Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China
  • 2Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
  • 3The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P. R. China
  • 4Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
  • 5Biomedical Engineering Department, Peking University, Beijing 100081, P. R. China
  • 6Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, P. R. China
  • 7International Cancer Institute, Peking University, Beijing 100191, P. R. China
  • show less
    References(49)

    [1] R. B. Hegde, K. Prasad, H. Hebbar, I. Sandhya. Peripheral blood smear analysis using image processing approach for diagnostic purposes: A review. Biocybern. Biomed. Eng., 38, 467-480(2018).

    [2] N. M. Deshpande, S. Gite, R. Aluval. A review of microscopic analysis of blood cells for disease detection with AI perspective. Peerj Comput. Sci., 7, e460(2021).

    [3] G. d’Onofrio. Full-field hemocytometry. Forty years of progress seen through Clinical and Laboratory Hematology and the International Journal of Laboratory Hematology. Int. J. Lab Hematol., 43, 7-14(2021).

    [4] Y. Feng, H. Yin, G. Mai, L. Mao, J. Yue, H. Xiao, Z. Hu. Elevated serum levels of CCL17 correlate with increased peripheral blood platelet count in patients with active tuberculosis in China. Clin. Vaccine Immunol., 18, 629-632(2011).

    [5] A. Korniluk, O. M. Koper-Lenkiewicz, J. Kamińska, H. Kemona, V. Dymicka Piekar-ska. Mean platelet volume (MPV): New perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediat Inflamm., 2019, 1-14(2019).

    [6] Y. Zhou, A. Isozaki, A. Yasumoto, T. H. Xiao, Y. Yatomi, C. Lei, K. Goda. Intelligent platelet morphometry. Trends Biotechnol., 39, 978-989(2021).

    [7] J. Zhou, E. Xu, K. Shao, W. Shen, Y. Gu, M. Li, W. Shen. Circulating platelet-neutrophil aggregates as risk factor for deep venous thrombosis. Clin. Chem. Lab Med., 57, 707-715(2019).

    [8] D. Yang, Z. Yuan, Z. Yang, M. Hu, Y. Liang. High resolution polarization sensitive optical coherence tomography and optical coherence tomography angiography for zebrafish skin imaging. J. Innov. Opt. Health Sci., 14, 2150022(2021).

    [9] X. Wei, Y. Cao, G. Fu, Y. Wang. A counting method for complex overlapping erythr-ocytes basedmicroscopic imaging. J. Innov. Opt. Health Sci., 8, 1550033(2015).

    [10] V. Acharya, P. Kumar. Identification and red blood cell automated counting from blood smear images using computer-aided system. Med. Biol. Eng. Comput., 56, 483-489(2018).

    [11] M. Lu, W. Shi, Z. Jiang, B. Li, D. Ta, X. Liu. Deep learning method for cell count from transmitted-light microscope. J. Innov. Opt. Health Sci., 16, 2350004(2023).

    [12] J. Sun, L. Wang, Q. Liu, A. Tarnok, X. T. Su. Deep learning-based light scattering microfluidic cytometry for label-free cute lymphocytic leukemia classification. Biomed. Opt. Exp., 11, 6674-6686(2020).

    [13] S. Sharma, S. Gupta, D. Gupta, S. Juneja, P. Gupta, G. Dhiman, S. Kautish. Deep learning model for the automatic classification of white blood cells. Comput. Intell. Neurosci., 2022, 7384131(2022).

    [14] R. A. Bagido, M. Alzahrani, M. Arif. White blood cell types classification using deep learning models. Int. J. Comput. Sci. Netw., 21, 223-229(2021).

    [15] R. B. Hegde, K. Prasad, H. Hebbar, B. M. K. Singh. Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images. Multimed. Tools Appl., 78, 17879-17898(2019).

    [16] P. Pandey, A. P. Prathosh, V. Kyatham, D. Mishra, T. R. Dastidar. Target-independent domain adaptation for WBC classification using generative latent search. IEEE Trans. Med. Imaging, 39, 3979-3991(2020).

    [17] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal., 39, 1137-1149(2016).

    [18] M. M. Alam, M. T. Islam. Machine learning approach of automatic identification and counting of blood cells. Healthcare Technol. Lett., 6, 103-108(2019).

    [19] J. Yao, X. Huang, M. Wei, W. Han, X. Xu, R. Wang, J. Chen, L. Sun. High-efficiency classification of white blood cells based on object detection. J. Healthcare Eng., 2021, 1615192(2021).

    [20] R. Khandekar, P. Shastry, S. Jaishankar, O. Faust, N. Sampathila. Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomed. Signal Process., 68, 102690(2021).

    [21] G. N. McKay, N. Mohan, N. J. Durr. Imaging human blood cells in vivo with oblique back-illumination capillaroscopy. Biomed. Opt. Exp., 11, 2373-2382(2020).

    [22] A. Mayado, A. Orfao, A. Mentink, M. L. Gutierrez, L. Munoz-Bellvis, L. W. M. M. Terstappen. Detection of circulating tumor cells in blood of pancreatic ductal adenocarcinoma patients. Cancer Drug Resist., 3, 83(2020).

    [23] R. Kwizera, A. Akampurira, T. K. Kandole, M. S. Nabaggala, D. A. Williams, A. Kambugu, D. B. Meya, J. Rhein, D. R. Boulware. Evaluation of trypan blue stain in the TC20 automated cell counter as a point-of-care for the enumeration of viable cryptococcal cells in cerebrospinal fluid. Med. Mycol., 56, 559-564(2018).

    [24] Y. Zeng, J. Xu, D. Li, L. Li, Z. L. Wen, J. M. Y. Qu. Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging. Opt. Lett., 37, 2490-2492(2012).

    [25] Y. Yu, Y. Zheng, C. Guan, Y. Min, Y. Chen, Y. Zeng, H. Xiong, X. Wang, J. Zhong, W. Ding, M. Wang, X. Wei. Detection of cells by flow cytometry: Counting, imaging, and cell classification. J. Innov. Opt. Health Sci., 16, 2350005(2023).

    [26] P. Kai, B. Gu, F. Liu, M. Dong, L. Zhu, X. Wei. Recent advances in fluorescence-based in vivo flowcytometry. J. Innov. Opt. Health Sci., 12, 1930008(2019).

    [27] J. Guo, Z. Fan, Z. Gu, X. Wei. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry. J. Innov. Opt. Health Sci., 5, 1250027(2012).

    [28] D. A. Sipkins, X. Wei, J. W. Wu, J. M. Runnels, D. Cote, T. K. Means, A. D. Luster, D. T. Scadden. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969-973(2005).

    [29] R. Agrawal, P. Balne, S. B. B. Tun, Y. S. Wey, N. Khandelwal, V. A. Barathi. Fluorescent dye labeling of erythrocytes and leukocytes for studying the flow dynamics in mouse retinal circulation. J. Vis. Exp., 125, e55495(2017).

    [30] X. Zhu, Y. Suo, Y. Fu, F. Zhang, N. Ding, K. Pang, C. Xie, X. Weng, M. Tian, H. He, X. Wei. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. Light-Sci. Appl., 10, 110(2021).

    [31] S. Thapa, D. L. Stachura. Deep learning approach for quantification of fluorescently labeled blood cells in Danio rerio (Zebrafish). Bioinform. Biol. Insights., 15, 1-9(2021).

    [32] M. M. Winer, A. Zeidan, D. Yeheskely-Hayon, L. Golan, L. Minai, E. J. Dann, D. Yelin. In vivo noninvasive microscopy of human leucocytes. Sci. Rep., 7, 2045-2322(2017).

    [33] J. W. Jeon, Y. Hwang, J. G. Lee, E. J. Kong, J. Moon, S. J. Hong, P. Kim. Intravital imaging of circulating red blood cells in the retinal vasculature of growing mice. Transl. Vis. Sci. Technol., 10, 31(2021).

    [34] E. I. Galanzha, V. P. Zharov. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters. Cytometry A., 79A, 746-757(2011).

    [35] F. Zhang, M. Wang, D. Han, H. Tan, G. Yang, Y. Zeng. In vivo full-field functional optical hemocytometer. J Biophoton., 11, e201700039(2018).

    [36] V. V. Tuchin, A. Tárnok, V. P. Zharov. In vivo flow cytometry: A horizon of opportunities. Cytometry A., 79A, 737-745(2011).

    [37] D. Bzdok, M. Krzywinski, N. Altman. Machine learning: A primer. Nat Methods., 14, 1119(2017).

    [38] S. S. Ulyanov, V. V. Tuchin. Use of low-coherence speckled speckles for bio flow measurements. Appl. Opt., 39, 6385-6389(2000).

    [39] G. M. Hale, M. R. Querry. Optical constants of water in the 200nm to 200um wavelength region. Appl. Opt., 12, 555-563(1973).

    [40] R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, R. Cubeddu. “Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,”. Biomedical Topical Meeting, OSA Technical Digest, SF4(2004).

    [41] M. Meinke, G. Müller, J. Helfmann, M. Friebel. Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range. J. Biomed. Opt., 12, 014024(2007).

    [42] C. Guan, M. Yi, Q. Du, H. Xiong, H. Tan, M. Wang, Y. Zeng. Full-field optical multi-functionalangiography based on endogenous hemodynamic characteristics. J. Biophoton., 14, e202-000411(2021).

    [43] M. Wang, W. Mao, C. Guan, G. Feng, H. Tan, D. Han, Y. Zeng. Full-field functional optical angiography. Opt. Lett., 42, 635-638(2017).

    [44] K. Y. Dholakia, A. Guevara-Torres, G. Feng, D. Power, J. Schallek. In vivo capillary structure and blood cell flux in the normal and diabetic mouse eye. Invest. Ophthalmol. Vis. Sci., 63, 18(2022).

    [45] D. Traver, P. Herbomel, E. E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, N. S. Tred. The zebrafish as a model organization to study development of the immune system. Adv. Immunol., 81, 253-330(2003).

    [46] D. A. Bottino, E. Bouskela. Non-invasive techniques to access in vivo the skin microcirculation in patients. Front Med., 9, 1099107(2023).

    [47] A. P. Sahastrabuddhe. Counting of RBC and WBC using image proceing: A review. Hemoglobin, 12, 14-17(2016).

    [48] G. A. Barabino, M. O. Platt, D. K. Kaul. Sickle cell biomechanics. Annu. Rev. Biomed. Eng., 12, 345-367(2010).

    [49] P. Agrawal, P. Varma. Automated detection and counting of red blood cell using image processing techniques. Int. J. Sci. Res. Manage., 3, 2692-2695(2015).

    Tools

    Get Citation

    Copy Citation Text

    Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei. Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2450009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 16, 2024

    Accepted: Apr. 22, 2024

    Published Online: Aug. 8, 2024

    The Author Email: Wang Mingyi (wangmingyi@mail.bnu.edu.cn), Wei Xunbin (xwei@bjmu.edu.cn)

    DOI:10.1142/S1793545824500093

    Topics