Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1250(2024)

High-Temperature Energy Storage Properties of Polymer-Based Composite Films Based on Multidimensional Synergy

TAN yipeng1...2, GAO hang1,2, FENG ziwen1,2, LU linfei1,2,3, DENG jiayu1, YAO lingmin1,2,3,*, and DENG qinglin12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(30)

    [1] [1] PING J B, FENG Q K, ZHANG Y X, et al. A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density[J]. Nanomicro Lett, 2023, 15(1): 154.

    [2] [2] LI J P, JIANG J H, CHEN Y, et al. Enhanced dielectric performance with high-temperature stability by interface-modulation of the core-shell structured imide-polymer@BT nanohybrids in PEI-based nanocomposites[J]. J Mater Chem C, 2023, 11(22): 7289-7298.

    [3] [3] ZHANG K Y, MA Z Y, DENG H, et al. Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer[J]. Adv Compos Hybrid Mater, 2022, 5(1): 238-249.

    [4] [4] XIA S M, SHI Z C, SUN K, et al. Achieving remarkable energy storage enhancement in polymer dielectrics via constructing an ultrathin coulomb blockade layer of gold nanoparticles[J]. Mater Horizons, 2023, 10(7): 2476-2486.

    [5] [5] ZHANG K Y, MA Z Y, FU Q A, et al. Multi-layered boron nitride/polyimide high-temperature capacitor dielectric film[J]. Mater. Today Energy, 2022, 29: 101093.

    [6] [6] CAI Z M, ZHU C Q, WU L W, et al. Vortex domain configuration for energy-storage ferroelectric ceramics design: a phase-field simulation[J]. Appl Phys Lett, 2021, 119(3): 032901.

    [7] [7] CHEN X, YANG T N, ZHANG Q Y, et al. Topological structure enhanced nanostructure of high temperature polymer exhibiting more than ten times enhancement of dipolar response[J]. Nano Energy, 2021, 88: 106225.

    [8] [8] WANG P J, GUO Y, ZHOU D, et al. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers[J]. Adv Funct Mater, 2022, 32(31): 2204155.

    [9] [9] FAN M Z, SUN B Z, JIANG J Y, et al. Enhanced energy density in polyetherimide nanocomposite film at high temperature induced by electrospun BaZrTiO3 nanofibers[J]. Rare Metals, 2023, 42(6): 1912-1922.

    [10] [10] ZHU Y K, YAO H, JIANG P K, et al. Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density[J]. J Phys Chem C, 2018, 122(32): 18282-18293.

    [11] [11] ALI A, AHMAD M N, HUSSAIN T, et al. Materials innovations in 2D-filler reinforced dielectric polymer composites[J]. Mater Innovations, 2022, 2(2): 47-66.

    [12] [12] CHEN H X, PAN Z B, WANG W L, et al. Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application[J]. Compos Part A Appl Sci Manuf, 2021, 142: 106266.

    [13] [13] SHANG Y N, FENG Y, ZHANG C H, et al. Excellent energy storage performance in polymer composites with insulating and polarized two-dimensional fillers[J]. Compos Part A Appl Sci Manuf, 2023: 107429.

    [14] [14] LI Q, ZHANG G Z, LIU F H, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets[J]. Energy Environ Sci, 2015, 8(3): 922-931.

    [15] [15] KUANG Z Q, CHEN Y L, LU Y L, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14): 1655-1659.

    [16] [16] WANG X H, YUAN Y, ZHANG Y T, et al. Covalently modified and hierarchically structured corn-like BNNs@BT/benzoxazole composites with enhanced dielectric properties over an ultra-wide temperature range[J]. Compos Part A Appl Sci Manuf, 2022, 160: 107027.

    [17] [17] HU P H, SUN W D, FAN M Z, et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers[J]. Appl Surf Sci, 2018, 458: 743-750.

    [18] [18] DONG J F, HU R C, NIU Y J, et al. Scalable in situ surface-coated polymer dielectrics with significantly enhanced high-temperature breakdown strength[J]. Mater Today Energy, 2022, 30: 101158.

    [19] [19] LIU H, LI S C, MA L L, et al. High energy density PVDF-based composites with efficient stripping of boron nitride nanosheets[J]. ECS J Solid State Sci Technol, 2023, 12(4): 043009.

    [20] [20] YANG X L, LI H Y, XIE X Y, et al. Enhancing high-temperature energy density through Al2O3 nanoplates with charge barrier effect in polyetherimide-based composites[J]. Macromol Chem Phys, 2023, 224(9): 2200457.

    [21] [21] SUN B Z, HU P H, JI X M, et al. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature[J]. Small, 2022, 18(28): e2202421.

    [22] [22] CHEN H X, PAN Z, CHENG Y, et al. Inhibition conduction loss for distinct improvement of energy storage density over a broad temperature range in polyetherimide-based composite films[J]. Polymer, 2023, 265: 125572.

    [23] [23] HU H L, ZHANG F, LUO S B, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage[J]. Nano Energy, 2020, 74: 104844.

    [24] [24] NIU Y J, DONG J F, HE Y F, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface[J]. Nano Energy, 2022, 97: 107215.

    [25] [25] DONG J F, HU R C, XU X W, et al. A facile in situ surface- functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance[J]. Adv Funct Mater, 2021, 31(32): 2102644.

    [26] [26] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.

    [27] [27] CHENG S, ZHOU Y, LI Y S, et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage[J]. Energy Stor Mater, 2021, 42: 445-453.

    [28] [28] FENG Q K, LIU D F, ZHANG Y X, et al. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges[J]. Nano Energy, 2022, 99: 107410.

    [29] [29] AZIZI A, GADINSKI M R, LI Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Adv Mater, 2017, 29(35): 1701864.

    [30] [30] SUN W D, LU X J, JIANG J Y, et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures[J]. J Appl Phys, 2017, 121(24): 244101.

    Tools

    Get Citation

    Copy Citation Text

    TAN yipeng, GAO hang, FENG ziwen, LU linfei, DENG jiayu, YAO lingmin, DENG qinglin. High-Temperature Energy Storage Properties of Polymer-Based Composite Films Based on Multidimensional Synergy[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 23, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: lingmin YAO (Lingminyao@gzhu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230737

    Topics