International Journal of Extreme Manufacturing, Volume. 6, Issue 2, 22009(2024)

A review on current development of thermophotovoltaic technology in heat recovery

Shuni Chen... Yanming Guo*, Qinghui Pan and Yong Shuai |Show fewer author(s)
Author Affiliations
  • Ministry of Industry and Information Technology Key Laboratory of Aerospace Thermophysics, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
  • show less
    References(244)

    [1] [1] Le Quéré C, Peters G P, Friedlingstein P, Andrew R M,Canadell J G, Davis S J, Jackson R B and Jones M W 2021 Fossil CO2 emissions in the post-COVID-19 era Nat.Clim. Change 11 197–9

    [2] [2] Bertram C, Luderer G, Creutzig F, Bauer N, Ueckerdt F,Malik A and Edenhofer O 2021 COVID-19-induced low power demand and market forces starkly reduce CO2 emissions Nat. Clim. Change 11 193–6

    [3] [3] Liu Z et al 2020 Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic Nat. Commun. 11 5172

    [4] [4] Shindell D and Smith C J 2019 Climate and air-quality benefits of a realistic phase-out of fossil fuels Nature573 408–11

    [5] [5] Liu Z et al 2015 Reduced carbon emission estimates from fossil fuel combustion and cement production in China Nature 524 335–8

    [6] [6] Ma X J, Wang C X, Dong B Y, Gu G C, Chen R M, Li Y F,Zou H F, Zhang W F and Li Q N 2019 Carbon emissions from energy consumption in China: its measurement and driving factors Sci. Total Environ. 648 1411–20

    [7] [7] Ben-Abdallah P 2018 Energy harvesting from lukewarm photons Nat. Nanotechnol. 13 772–3

    [8] [8] Blackburn J L, Ferguson A J, Cho C and Grunlan J C 2018 Carbon-nanotube-based thermoelectric materials and devices Adv. Mater. 30 1704386

    [9] [9] Forman C, Muritala I K, Pardemann R and Meyer B 2016 Estimating the global waste heat potential Renew. Sustain.Energy Rev. 57 1568–79

    [10] [10] Bu Z L, Zhang X Y, Hu Y X, Chen Z W, Lin S Q, Li W,Xiao C and Pei Y Z 2022 A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery Nat. Commun. 13 237

    [11] [11] Aftab W, Usman A, Shi J M, Yuan K J, Qin M L and Zou R Q 2021 Phase change material-integrated latent heat storage systems for sustainable energy solutions Energy Environ. Sci. 14 4268–91

    [12] [12] IEA 2022 Global energy review: CO2 emissions in 2021(available at: www.iea.org/data-and-statistics/dataproduct/global-energy-review-co2-emissions-in-2021)

    [13] [13] Lenert A, Bierman D M, Nam Y, Chan W R, Celanovic I,Soljacic M and Wang E N 2014 A nanophotonic solar thermophotovoltaic device Nat. Nanotechnol.9 126–30

    [14] [14] Johnson I B, Choate W T, Davidson A, Johnson I,Choate W T and Davidson A 2008 Waste heat recovery Technology and Opportunities in U.S. Industry (BCS, Inc.)

    [15] [15] Selvan K V and Ali M S M 2016 Micro-scale energy harvesting devices: review of methodological performances in the last decade Renew. Sustain. Energy Rev. 54 1035–47

    [16] [16] Coutts T J 1999 A review of progress in thermophotovoltaic generation of electricity Renew. Sustain. Energy Rev.3 77–184

    [17] [17] Tyagi V V, Kaushik S C and Tyagi S K 2012 Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology Renew. Sustain. Energy Rev. 16 1383–98

    [18] [18] Lenert A, Bierman D M, Nam Y, Chan W R, Celanovic I,Soljacic M and Wang E N 2015 Addendum: a nanophotonic solar thermophotovoltaic device Nat.Nanotechnol. 10 563

    [19] [19] Omair Z, Pazos-Outon L M, Steiner M A and Yablonovitch E 2020 Accurate calibration of thermophotovoltaic efficiency PhotoniX 1 21

    [20] [20] Datas A, Lopez-Ceballos A, Lopez E, Ramos A and Del Canizo C 2022 Latent heat thermophotovoltaic batteries Joule 6 418–43

    [21] [21] Yang M-M, Kim D J and Alexe M 2018 Flexo-photovoltaic effect Science 360 904–7

    [22] [22] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating Nat. Commun. 5 4651

    [23] [23] Sampaio P G V and Gonzalez M O A 2017 Photovoltaic solar energy: conceptual framework Renew. Sustain.Energy Rev. 74 590–601

    [24] [24] Daneshvar H, Prinja R and Kherani N P 2015 Thermophotovoltaics: fundamentals, challenges and prospects Appl. Energy 159 560–75

    [25] [25] Rana A S, Zubair M, Danner A and Mehmood M Q 2021 Revisiting tantalum based nanostructures for efficient harvesting of solar radiation in STPV systems Nano Energy 80 105520

    [26] [26] Seyf H R and Henrya A 2016 Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power Energy Environ. Sci. 9 2654–65

    [27] [27] Mustafa K F, Abdullah S, Abdullah M Z and Sopian K 2017 A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems Renew. Sust.Energ Rev. 71 572–84

    [28] [28] Chen B H and Shan S Q 2022 Construction and performance analysis of a solar thermophotovoltaic system targeting on the efficient utilization of AM0 space solar radiation iScience 25 105373

    [29] [29] He Z Q, Yan Y F, Zhao T, Zhang Z and Mikulcic H 2022 Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems Renew. Sustain. Energy Rev. 165 112595

    [30] [30] Gentillon P, Singh S, Lakshman S, Zhang Z, Paduthol A,Ekins-Daukes N J, Chan Q N and Taylor R A 2019 A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission Appl. Energy 254 113721

    [31] [31] Yang Z M, Peng W L, Liao T J, Zhao Y R, Lin G X and Chen J C 2017 An efficient method exploiting the waste heat from a direct carbon fuel cell by means of a thermophotovoltaic cell Energy Convers. Manage.149 424–31

    [32] [32] Du K-K, Li Q, Lyu Y-B, Ding J-C, Lu Y, Cheng Z-Y and Qiu M 2017 Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST Light Sci. Appl. 6 e16194

    [33] [33] Jeon N, Hernandez J J, Rosenmann D, Gray S K,Martinson A B F and Foley J J 2018 Pareto optimal spectrally selective emitters for thermophotovoltaics via weak absorber critical coupling Adv. Energy Mater.8 1801035

    [34] [34] Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I,Soljacic M and Wang E N 2016 Enhanced photovoltaic energy conversion using thermally based spectral shaping Nat. Energy 1 16068

    [35] [35] Wang H, Chang J-Y, Yang Y and Wang L P 2016 Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters Int. J. Heat Mass Transfer 98 788–98

    [36] [36] Kristensen R T, Beausang J F and DePoy D M 2004 Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control J. Appl. Phys. 95 4845–51

    [37] [37] Hitchcock C W, Gutmann R J, Borrego J M, Bhat I B and Charache G W 1999 Antimonide-based devices for thermophotovoltaic applications IEEE Trans. Electron Devices 46 2154–61

    [38] [38] Gamel M M A, Lee H J, Rashid W E S W A, Ker P J,Yau L K, Hannan M A and Jamaludin M Z 2021 A review on thermophotovoltaic cell and its applications in energy conversion: issues and recommendations Materials 14 4944

    [39] [39] Wang Q X et al 2023 Module-level polaritonic thermophotovoltaic emitters via hierarchical sequential learning Nano Lett. 23 1144–51

    [40] [40] Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M,Fan D J, Lenert A and Forrest S R 2022 Air-bridge Si thermophotovoltaic cell with high photon utilization ACS Energy Lett. 7 2388–92

    [41] [41] Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H,Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M and Celanovic I 2013 Toward high-energy-density,high-efficiency, and moderate-temperature chip-scale thermophotovoltaics Proc. Natl Acad. Sci. USA 110 5309–14

    [42] [42] Cao F, Huang Y, Tang L, Sun T Y, Boriskina S V, Chen G and Ren Z F 2016 Toward a high-efficient utilization of solar radiation by quad-band solar spectral splitting Adv. Mater.28 10659–63

    [43] [43] Wang H Y, Tang X B, Liu Y P, Xu Z H, Yuan Z C, Liu K,Zhang Z R and Jiang T X 2020 Thermal emission-enhanced and optically modulated radioisotope thermophotovoltaic generators Energy Technol. 8 1901170

    [44] [44] Usman M, Kazim A H, Shabbir A, Abbasi M S and Sarwar J 2022 Efficiency enhancement of thermophotovoltaic cells with different design configurations using existing photon recycling technologies Front. Energy Res. 10 917419

    [45] [45] White D C and Hottel H C 1995 Important factors in determining the efficiency of TPV systems AIP Conf.Proc. 321 425–36

    [46] [46] Bendelala F, Cheknane A and Hilal H 2018 Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter Sol. Energy 174 1053–7

    [47] [47] Lee S I, Um D H and Kwon O C 2013 Performance of a micro-thermophotovoltaic power system using an ammonia-hydrogen blend-fueled micro-emitter Int. J.Hydrog. Energy 38 9330–42

    [48] [48] Zhao B, Chen K F, Buddhiraju S, Bhatt G, Lipson M and Fan S H 2017 High-performance near-field thermophotovoltaics for waste heat recovery Nano Energy41 344–50

    [49] [49] Song B, Thompson D, Fiorino A, Ganjeh Y, Reddy P and Meyhofer E 2016 Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps Nat. Nanotechnol. 11 509–14

    [50] [50] Lim M, Song J, Lee S S and Lee B J 2018 Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons Nat.Commun. 9 9

    [51] [51] Wang Z, Kortge D, He Z H, Song J W, Zhu J, Lee C,Wang H Y and Bermel P 2022 Selective emitter materials and designs for high-temperature thermophotovoltaic applications Sol. Energy Mater. Sol. Cells 238 111554

    [52] [52] Qiu K and Hayden A C S 2012 Development of a novel cascading TPV and TE power generation system Appl.Energy 91 304–8

    [53] [53] Shimizu M, Kohiyama A and Yugami H 2015 High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter J. Photonics Energy 5 053099

    [54] [54] Jiang D Y and Yang W 2017 A dielectric-encapsulated 2D photonic crystal based solar thermophotovoltaic power generator Appl. Therm. Eng. 125 1253–9

    [55] [55] Wu H, Kaviany M and Kwon O C 2018 Thermophotovoltaic power conversion using a superadiabatic radiant burner Appl. Energy 209 392–9

    [56] [56] Xu Q C, Chen P Z, Wu X and Cai Q L 2019 Performance analysis of a metamaterial-based near-field thermophotovoltaic system considering cooling system energy consumption Int. J. Thermophys. 40 30

    [57] [57] Bhatt R, Kravchenko I and Gupta M 2020 High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter Sol. Energy 197 538–45

    [58] [58] Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D,Forrest S R, Reddy P and Meyhofer E 2021 Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density Nat. Commun. 12 8

    [59] [59] Li D H and Xuan Y M 2022 Design and evaluation of a hybrid solar thermphotovoltaic-thermoelectric system Sol.Energy 231 1025–36

    [60] [60] Good B S and Chubb D L 1997 Effects of geometry on the efficiency of TPV energy conversion AIP Conf. Proc. 401 487–503

    [61] [61] Papadakis G T, Buddhiraju S, Zhao Z X, Zhao B and Fan S H 2020 Broadening near-field emission for performance enhancement in thermophotovoltaics Nano Lett.20 1654–61

    [62] [62] Park J H, Lee S I, Wu H and Kwon O C 2012 Thermophotovoltaic power conversion from a heat-recirculating micro-emitter Int. J. Heat Mass Transfer55 4878–85

    [63] [63] Datas A and Algora C 2013 Development and experimental evaluation of a complete solar thermophotovoltaic system Prog. Photovolt. 21 1025–39

    [64] [64] Yang W M, Chua K J, Pan J F, Jiang D Y and An H 2014 Development of micro-thermophotovoltaic power generator with heat recuperation Energy Convers.Manage. 78 81–87

    [65] [65] Wang X, Chan W R, Stelmakh V, Soljacic M,Joannopoulos J D, Celanovic I and Fisher P H 2015 Prototype of radioisotope thermophotovoltaic system using photonic crystal spectral control J. Phys.: Conf. Ser.660 012034

    [66] [66] Liu Z and Qiu K 2017 A TPV power system consisting of a composite radiant burner and combined cells Energy 141 892–7

    [67] [67] Yang Z M, Zhang Y C, Dong Q C, Lin J, Lin G X and Chen J C 2018 Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust Renew. Energy 121 28–35

    [68] [68] Zhang C, Tang L L, Liu Y, Liu Z M, Liu W and Qiu K R 2020 A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance Energy 195 116962

    [69] [69] Saraey G, Gholami J, Gharehghani A and Dehghani A M 2022 Evaluation of the emitter structure and temperature effect on a thermophotovoltaic system with an optimal cavity Sol. Energy 231 1115–26

    [70] [70] Sergeev A and Waits C M 2020 Effects of photon recycling,trapping, and reuse on thermophotovoltaic conversion efficiency and output power J. Photonics Energy10 035501

    [71] [71] Jeon N, Mandia D J, Gray S K, Foley J J and Martinson A B F 2019 High-temperature selective emitter design and materials: titanium aluminum nitride alloys for thermophotovoltaics ACS Appl. Mater. Interfaces11 41347–55

    [72] [72] Fiorino A, Zhu L X, Thompson D, Mittapally R, Reddy P and Meyhofer E 2018 Nanogap near-field thermophotovoltaics Nat. Nanotechnol.13 806–11

    [73] [73] Polder D and van Hove M 1971 Theory of radiative heat transfer between closely spaced bodies Phys. Rev. B4 3303–14

    [74] [74] Dang C, Liu X, Xia H, Wen S and Xu Q 2021 High-performance three-body near-field thermophotovoltaic energy conversion J. Quant.Spectrosc. Radiat. Transfer 259 107411

    [75] [75] Liu X, Wang L and Zhang Z M 2015 Near-field thermal radiation: recent progress and outlook Nanoscale Microscale Thermophys. Eng. 19 98–126

    [76] [76] Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H and Yi H L 2022 Near-field radiative heat transfer in hyperbolic materials Int. J. Extrem. Manuf. 4 032002

    [77] [77] Yang Y, Chang J-Y, Sabbaghi P and Wang L 2017 Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell J. Heat Transfer 139 052701

    [78] [78] Liao T J, Yang Z M, Peng W L, Chen X H and Chen J C 2017 Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency Energy Convers. Manage.152 214–20

    [79] [79] Shan S Q, Huang H D, Chen B H, Tian J L, Zhang Y W and Zhou Z J 2023 A novel oxy-enrich near-field thermophotovoltaic system for sustainable fuel: design guidelines and thermodynamic parametric analysis Renew.Energy 211 494–507

    [80] [80] Datas A and Vaillon R 2019 Thermionic-enhanced near-field thermophotovoltaics Nano Energy 61 10–17

    [81] [81] Chaudhuri T K 1992 A solar thermophotovoltaic converter using PbS photovoltaic cells Int. J. Energy Res. 16 481–7

    [82] [82] Lowe R A, Chubb D L, Farmer S C and Good B S 1994 Rare-earth garnet selective emitter Appl. Phys. Lett.64 3551–3

    [83] [83] Tobler W J and Durisch W 2008 Plasma-spray coated rare-earth oxides on molybdenum disilicide—high temperature stable emitters for thermophotovoltaics Appl.Energy 85 371–83

    [84] [84] Yang W M, Chou S K, Shu C, Li Z W and Xue H 2007 Experimental study of micro-thermophotovoltaic systems with different combustor configurations Energy Convers.Manage. 48 1238–44

    [85] [85] Khvostikov V P, Sorokina S V, Potapovich N S,Khvostikova O A, Malievskaya A V, Vlasov A S,Shvarts M Z, Timoshina N K and Andreev V M 2010 Thermophotovoltaic generators based on gallium antimonide Semiconductors 44 255–62

    [86] [86] Bitnar B, Durisch W, Mayor J-C, Sigg H and Tschudi H R2002 Characterisation of rare earth selective emitters for thermophotovoltaic applications Sol. Energy Mater. Sol.Cells 73 221–34

    [87] [87] Yang W M, Chou S K, Shu C, Xue H and Li Z W 2004 Development of a prototype micro-thermophotovoltaic power generator J. Phys. D: Appl. Phys. 37 1017–20

    [88] [88] Cui K H, Lemaire P, Zhao H B, Savas T, Parsons G and Hart A J 2018 Tungsten-carbon nanotube composite photonic crystals as thermally stable spectral-selective absorbers and emitters for thermophotovoltaics Adv.Energy Mater. 8 1801471

    [89] [89] Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S and Mazzer M 2004 The origin of highly efficient selective emission in rare-earth oxides for thermophotovoltaic applications Nat. Mater. 3 632–7

    [90] [90] Yeng Y X, Ghebrebrhan M, Bermel P, Chan W R,Joannopoulos J D, Soljacic M and Celanovic I 2012 Enabling high-temperature nanophotonics for energy applications Proc. Natl Acad. Sci. USA 109 2280–5

    [91] [91] Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G H,Teng J H and Zheludev N I 2016 Optically reconfigurable metasurfaces and photonic devices based on phase change materials Nat. Photon. 10 60–65

    [92] [92] Cao T, Lian M, Liu K, Lou X C, Guo Y M and Guo D M 2022 Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces Int. J. Extrem. Manuf.4 015101

    [93] [93] Zhang W Q, Ye H T, Feng X B, Zhou W Z, Cao K, Li M Y,Fan S F and Lu Y 2022 Tailoring mechanical properties of PμSL 3D-printed structures via size effect Int. J. Extrem.Manuf. 4 045201

    [94] [94] Li X, Peng W T, Wu W W, Xiong J and Lu Y 2023 Auxetic mechanical metamaterials: from soft to stiff Int. J. Extrem.Manuf. 5 042003

    [95] [95] Zhang X Q, Yuan W, Huang H L, Xu M, Chen Y, Zhao B T,Ding X R, Zhang S W, Tang Y and Lu L S 2023 Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries Int. J. Extrem. Manuf.5 015503

    [96] [96] Shelby R A, Smith D R and Schultz S 2001 Experimental verification of a negative index of refraction Science292 77–79

    [97] [97] Hu Y Q, Luo X H, Chen Y Q, Liu Q, Li X, Wang Y S, Liu N and Duan H G 2019 3D-integrated metasurfaces for full-colour holography Light Sci. Appl. 8 86

    [98] [98] Chen K, Adato R and Altug H 2012 Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy ACS Nano 6 7998–8006

    [99] [99] Zobeiri H, Hunter N, Xu S, Xie Y S and Wang X W 2022 Robust and high-sensitivity thermal probing at the nanoscale based on resonance Raman ratio (R3) Int. J. Extrem. Manuf. 4 035201

    [100] [100] Pelton M 2015 Modified spontaneous emission in nanophotonic structures Nat. Photon. 9 427–35

    [101] [101] Yang Y H, Gao Z, Xue H R, Zhang L, He M J, Yang Z J,Singh R, Chong Y D, Zhang B L and Chen H S 2019 Realization of a three-dimensional photonic topological insulator Nature 565 622–6

    [102] [102] Segal N, Keren-Zur S, Hendler N and Ellenbogen T 2015 Controlling light with metamaterial-based nonlinear photonic crystals Nat. Photon. 9 180–4

    [103] [103] Pan Q H, Zhou S H, Guo Y M and Shuai Y 2022 Enhanced photoelectric responsivity of bilayer graphene/GaAs photodetector using plasmon resonance grating structures Optik 259 169031

    [104] [104] Guo Y M, Xiong B, Shuai Y and Zhao J M 2020 Thermal driven wavelength-selective optical switch based on magnetic polaritons coupling J. Quant. Spectrosc. Radiat.Transfer 255 107230

    [105] [105] Zhong Y K, Fu S M, Ju N P, Chen P Y and Lin A 2015 Experimentally-implemented genetic algorithm(Exp-GA): toward fully optimal photovoltaics Opt.Express 23 A1324–33

    [106] [106] Molesky S, Lin Z, Piggott A Y, Jin W L, Vuckovic J and Rodriguez A W 2018 Inverse design in nanophotonics Nat. Photon. 12 659–70

    [107] [107] Zhou S H, Qiu J, Zhang C, Guo Y M, Pan Q H, Zhou Q and Shuai Y 2022 Fast design and optimization method for an ultra-wideband perfect absorber based on artificial neural network acceleration Int. J. Therm. Sci. 179 107680

    [108] [108] Hu R, Song J L, Liu Y D, Xi W, Zhao Y T, Yu X J, Cheng Q,Tao G M and Luo X B 2020 Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis Nano Energy 72 104687

    [109] [109] Wei D et al 2018 Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal Nat. Photon. 12 596–600

    [110] [110] Hou J, Li M Z and Song Y L 2018 Patterned colloidal photonic crystals Angew. Chem., Int. Ed. 57 2544–53

    [111] [111] Sunku S S et al 2018 Photonic crystals for nano-light in moire graphene superlattices Science 362 1153–6

    [112] [112] Kildishev A V, Boltasseva A and Shalaev V M 2013 Planar photonics with metasurfaces Science 339 1232009

    [113] [113] Papadakis G T, Fleischman D, Davoyan A, Yeh P and Atwater H A 2018 Optical magnetism in planar metamaterial heterostructures Nat. Commun. 9 296

    [114] [114] Nagpal P, Lindquist N C, Oh S-H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594–7

    [115] [115] Zhou Y, Qin Z, Liang Z Z, Meng D J, Xu H Y, Smith D R and Liu Y C 2021 Ultra-broadband metamaterial absorbers from long to very long infrared regime Light Sci. Appl. 10 138

    [116] [116] Lu D, Kan J J, Fullerton E E and Liu Z W 2014 Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials Nat.Nanotechnol. 9 48–53

    [117] [117] Lu D, Qian H L, Wang K W, Shen H, Wei F F, Jiang Y F,Fullerton E E, Yu P K L and Liu Z W 2018 Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells Adv.Mater. 30 1706411

    [118] [118] Tan T C, Srivastava Y K, Ako R T, Wang W H,Bhaskaran M, Sriram S, Al-naib I, Plum E and Singh R 2021 Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing Adv. Mater. 33 2100836

    [119] [119] Hou C J, Wang Y, Yang L J, Li B, Cao Z Q, Zhang Q H,Wang Y Q, Yang Z and Dong L X 2018 Position sensitivity of optical nano-antenna arrays on optoelectronic devices Nano Energy 53 734–44

    [120] [120] Abdollahramezani S et al 2022 Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency Nat. Commun. 13 1696

    [121] [121] Zhang Y F et al 2021 Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material Nat. Nanotechnol. 16 661–6

    [122] [122] Wang L P and Zhang Z M 2012 Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics Appl. Phys. Lett. 100 063902

    [123] [123] Arpin K A et al 2013 Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification Nat. Commun. 4 2630

    [124] [124] Woolf D, Hensley J, Cederberg J G, Bethke D T, Grine A D and Shaner E A 2014 Heterogeneous metasurface for high temperature selective emission Appl. Phys. Lett.105 081110

    [125] [125] Song J L, Wu H, Cheng Q and Zhao J M 2015 1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications J. Quant. Spectrosc. Radiat. Transfer158 136–44

    [126] [126] Dyachenko P N, Molesky S, Petrov A Y, Stormer M,Krekeler T, Lang S, Ritter M, Jacob Z and Eich M 2016 Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions Nat. Commun. 7 11809

    [127] [127] Kim J H, Jung S M and Shin M W 2017 High-temperature degradation of one-dimensional metallodielectric(W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system Opt. Mater. 72 45–51

    [128] [128] Chang C-C, Kort-Kamp W J M, Nogan J, Luk T S,Azad A K, Taylor A J, Dalvit D A R, Sykora M and Chen H-T 2018 High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting Nano Lett.18 7665–73

    [129] [129] Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T,Graf M, Jalas D, Ritter M, Stormer M, Petrov A Y and Eich M 2019 Metamaterial emitter forthermophotovoltaics stable up to 1400 ?C Sci. Rep. 9 7241

    [130] [130] Chirumamilla A et al 2021 Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting Mater. Today Phys. 21 100503

    [131] [131] Wang Q Y, Hou G Z, Zhu Y, Sun T, Xu J and Chen K J 2022 Nanolayered wavelength-selective narrowband thermal emitters for solar thermophotovoltaics ACS Appl. Nano Mater. 5 13455–62

    [132] [132] Burger T, Sempere C, Roy-Layinde B and Lenert A 2020 Present efficiencies and future opportunities in thermophotovoltaics Joule 4 1660–80

    [133] [133] Rinnerbauer V et al 2014 Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics Adv. Energy Mater. 4 1400334

    [134] [134] Rana A S, Zubair M, Chen Y F, Wang Z, Deng J,Chani M T S, Danner A, Teng J H and Mehmood M Q 2023 Broadband solar absorption by chromium metasurface for highly efficient solar thermophotovoltaic systems Renew. Sustain. Energy Rev. 171 113005

    [135] [135] Liu X, Su Y and Chen R 2023 Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles Int. J. Extrem. Manuf.5 022005

    [136] [136] Du W W, Tu J, Qiu M J, Zhou S Y, Luo Y W, Ong W-L and Zhao J J 2023 Temperature-mediated structural evolution of vapor-phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity Int. J. Extrem. Manuf. 5 025101

    [137] [137] Kim H-M, Kim D-G, Kim Y-S, Kim M and Park J-S 2023 Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook Int. J. Extrem. Manuf. 5 012006

    [138] [138] Tobler W J and Durisch W 2008 High-performance selective Er-doped YAG emitters for thermophotovoltaics Appl.Energy 85 483–93

    [139] [139] Darut G et al 2021 State of the art of particle emissions in thermal spraying and other high energy processes based on metal powders J. Cleaner Prod. 303 126952

    [140] [140] Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K,Zheng M J and Duan H G 2021 Sub-10 nm fabrication:methods and applications Int. J. Extrem. Manuf. 3 032002

    [141] [141] Wang J S, Fang F Z, An H J, Wu S, Qi H M, Cai Y X and Guo G Y 2023 Laser machining fundamentals: micro,nano, atomic and close-to-atomic scales Int. J. Extrem.Manuf. 5 012005

    [142] [142] Tan D Z, Wang Z, Xu B B and Qiu J R 2021 Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices Adv.Photonics 3 024002

    [143] [143] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

    [144] [144] Koushik D, Verhees W J H, Kuang Y, Veenstra S, Zhang D,Verheijen M A, Creatore M and Schropp R E I 2017 High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture Energy Environ.Sci. 10 91–100

    [145] [145] Bashir A, Awan T I, Tehseen A, Tahir M B and Ijaz M 2020 Interfaces and surfaces Chemistry of Nanomaterials ed T I Awan, A Bashir and A Tehseen (Elsevier) pp 51–87

    [146] [146] Zheng Z, Wang J Q, Bi P Q, Ren J Z, Wang Y F, Yang Y,Liu X Y, Zhang S Q and Hou J H 2022 Tandem organic solar cell with 20.2% efficiency Joule 6 171–84

    [147] [147] Ma Y, Li L, Qian J, Qu W, Luo R, Wu F and Chen R 2021 Materials and structure engineering by magnetron sputtering for advanced lithium batteries Energy Storage Mater. 39 203–24

    [148] [148] Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J G,Shalaev V M and Kildishev A V 2014 Refractory plasmonics with titanium nitride: broadband metamaterial absorber Adv. Mater. 26 7959–65

    [149] [149] Bae I, Choe H-C, Ahn S-G and Kim B-H 2023 Effect of microarchitectural surface of polycaprolactone modified by reactive ion etching on osteogenic differentiation Appl.Surf. Sci. 610 155571

    [150] [150] Jung J-M, Stellacci F and Jung H-T 2007 Generation of various complex patterned structures from a single ellipsoidal dot prepattern by capillary force lithography Adv. Mater. 19 4392–8

    [151] [151] Li P, Chen S Y, Dai H F, Yang Z M, Chen Z Q, Wang Y S,Chen Y Q, Peng W Q, Shan W B and Duan H G 2021 Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications Nanoscale 13 1529–65

    [152] [152] Shim S, Bei H, Miller M K, Pharr G M and George E P 2009 Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface Acta Mater. 57 503–10

    [153] [153] Tian Q Y et al 2020 MXene Ti3C2Tx saturable absorber for passively Q-switched mid-infrared laser operation of femtosecond-laser-inscribed Er:Y2O3 ceramic channel waveguide Nanophotonics 9 2495–503

    [154] [154] Tang H et al 2018 Experimental two-dimensional quantum walk on a photonic chip Sci. Adv. 4 eaat3174

    [155] [155] S?ndergaard T, Novikov S M, Holmgaard T, Eriksen R L,Beermann J, Han Z H, Pedersen K and Bozhevolnyi S I 2012 Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves Nat.Commun. 3 969

    [156] [156] Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J,Chilkoti A and Smith D R 2012 Controlled-reflectance surfaces with film-coupled colloidal nanoantennas Nature492 86–89

    [157] [157] Shiue R-J, Gao Y D, Tan C, Peng C, Zheng J B, Efetov D K,Kim Y D, Hone J and Englund D 2019 Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity Nat. Commun. 10 7

    [158] [158] Marichy C, Bechelany M and Pinna N 2012 Atomic layer deposition of nanostructured materials for energy and environmental applications Adv. Mater. 24 1017–32

    [159] [159] Gan Z S, Cao Y Y, Evans R A and Gu M 2013 Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size Nat. Commun.4 2061

    [160] [160] Chou J B, Yeng Y X, Lee Y E, Lenert A, Rinnerbauer V,Celanovic I, Soljacic M, Fang N X, Wang E N and Kim S-G 2014 Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals Adv. Mater.26 8041–5

    [161] [161] McSherry S, Webb M, Kaufman J, Deng Z H,Davoodabadi A, Ma T, Kioupakis E, Esfarjani K,Heron J T and Lenert A 2022 Nanophotonic control of thermal emission under extreme temperatures in air Nat.Nanotechnol. 17 1104–10

    [162] [162] Dong Q C, Liao T J, Yang Z M, Chen X H and Chen J C 2017 Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency Energy Convers. Manage. 136 44–49

    [163] [163] Chang Z et al 2022 First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga2I2S2 at room temperature Int. J. Extrem. Manuf. 4 025001

    [164] [164] Husain A A F, Hasan W Z W, Shafie S, Hamidon M N and Pandey S S 2018 A review of transparent solar photovoltaic technologies Renew. Sustain. Energy Rev.94 779–91

    [165] [165] Jordehi A R 2016 Parameter estimation of solar photovoltaic(PV) cells: a review Renew. Sustain. Energy Rev.61 354–71

    [166] [166] Ferrari C, Melino F, Pinelli M and Spina P R 2014 Thermophotovoltaic energy conversion: analytical aspects, prototypes and experiences Appl. Energy113 1717–30

    [167] [167] Hussain C M I, Duffy A and Norton B 2020Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation Appl. Energy 259 114181

    [168] [168] Nayak P K, Mahesh S, Snaith H J and Cahen D 2019 Photovoltaic solar cell technologies: analysing the state of the art Nat. Rev. Mater. 4 269–85

    [169] [169] Lee T D and Ebong A U 2017 A review of thin film solar cell technologies and challenges Renew. Sustain. Energy Rev.70 1286–97

    [170] [170] Battaglia C, Cuevas A and de Wolf S 2016 High-efficiency crystalline silicon solar cells: status and perspectives Energy Environ. Sci. 9 1552–76

    [171] [171] Sulima O V, Bett A W, Dutta P S, Mauk M G and Mueller R L 2002 GaSb-, lnGaAsSb-, lnGaSb-, lnAsSbPand Ge-TPV cells with diffused emitters Conf. Record of the 29th IEEE Photovoltaic Specialists Conf. pp 892–5

    [172] [172] Pandey A K, Tyagi V V, Selvaraj J A L, Rahim N A and Tyagi S K 2016 Recent advances in solar photovoltaic systems for emerging trends and advanced applications Renew. Sustain. Energy Rev. 53 859–84

    [173] [173] Kim S, Patel M, Nguyen T T, Yi J S, Wong C-P and Kim J 2020 Si-embedded metal oxide transparent solar cells Nano Energy 77 105090

    [174] [174] Jean J, Brown P R, Jaffe R L, Buonassisi T and Bulovic V2015 Pathways for solar photovoltaics Energy Environ.Sci. 8 1200–19

    [175] [175] Barrigon E, Heurlin M, Bi Z X, Monemar B and Samuelson L 2019 Synthesis and applications of III–V nanowires Chem. Rev. 119 9170–220

    [176] [176] Omair Z, Scranton G, Pazos-Outon L M, Xiao T P,Steiner M A, Ganapati V, Peterson P F, Holzrichter J,Atwater H and Yablonovitch E 2019 Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering Proc. Natl Acad. Sci. USA 116 15356–61

    [177] [177] LaPotin A et al 2022 Thermophotovoltaic efficiency of 40%Nature 604 287–91

    [178] [178] Xie M Q, Zhang S L, Cai B, Gu Y, Liu X H, Kan E J and Zeng H B 2017 Van der Waals bilayer antimonene: a promising thermophotovoltaic cell material with 31% energy conversion efficiency Nano Energy 38 561–8

    [179] [179] Fan D J, Burger T, McSherry S, Lee B, Lenert A and Forrest S R 2020 Near-perfect photon utilization in an air-bridge thermophotovoltaic cell Nature586 237–41

    [180] [180] Kiani A et al 2016 Gradient-doped colloidal quantum dot solids enable thermophotovoltaic harvesting of waste heat ACS Energy Lett. 1 740–6

    [181] [181] Tervo E J et al 2022 Efficient and scalable GaInAs thermophotovoltaic devices Joule 6 2566–84

    [182] [182] Bhatt G R, Zhao B, Roberts S, Datta I, Mohanty A, Lin T,Hartmann J-M, St-Gelais R, Fan S H and Lipson M 2020Integrated near-field thermo-photovoltaics for heat recycling Nat. Commun. 11 2545

    [183] [183] Bi Y, Bertran A, Gupta S, Ramiro I, Pradhan S,Christodoulou S, Majji S-N, Akgul M Z and Konstantatos G 2019 Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots Nanoscale 11 838–43

    [184] [184] Sargent E H 2009 Infrared photovoltaics made by solution processing Nat. Photon. 3 325–31

    [185] [185] Zhang X L, Santra P K, Tian L, Johansson M B, Rensmo H and Johansson E M J 2017 Highly efficient flexible quantum dot solar cells with improved electron extraction using MgZnO nanocrystals ACS Nano11 8478–87

    [186] [186] Kim H I et al 2020 Monolithic organic/colloidal quantum dot hybrid tandem solar cells via buffer engineering Adv.Mater. 32 2004657

    [187] [187] Pescetelli S et al 2022 Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm Nat. Energy 7 597–607

    [188] [188] Li L D et al 2022 Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact Nat. Energy 7 708–17

    [189] [189] Wang Y, Zhang X W, Zhang X L and Chen N F 2012 Electricity generation from thermal irradiation governed by GaSb active layer Renew. Energy 48 231–7

    [190] [190] Onyegam E U et al 2013 Exfoliated, thin, flexible germanium heterojunction solar cell with record FF=58.1% Sol.Energy Mater. Sol. Cells 111 206–11

    [191] [191] Tang L L, Ye H and Xu J 2014 A novel zinc diffusion process for the fabrication of high-performance GaSb thermophotovoltaic cells Sol. Energy Mater. Sol. Cells122 94–98

    [192] [192] Wang Y and Lou Y-Y 2015 Radiant thermal conversion in 0.53 eV GaInAsSb thermophotovoltaic diode Renew.Energy 75 8–13

    [193] [193] Ni Q, Ye H, Shu Y and Lin Q Z 2016 A theoretical discussion on the internal quantum efficiencies of the epitaxial single crystal GaSb thin film cells with different p–n junctions Sol. Energy Mater. Sol. Cells149 88–96

    [194] [194] Burger T, Fan D J, Lee K, Forrest S R and Lenert A 2018 Thin-film architectures with high spectral selectivity for thermophotovoltaic cells ACS Photonics 5 2748–54

    [195] [195] Lu Q, Beanland R, Montesdeoca D, Carrington P J,Marshall A and Krier A 2019 Low bandgap GaInAsSb thermophotovoltaic cells on GaAs substrate with advanced metamorphic buffer layer Sol. Energy Mater. Sol. Cells191 406–12

    [196] [196] Khvostikov V P, Grachev Y V, Vlasov A S, Khvostikova O A and Sorokina S V 2021 Reducing optical losses in thermophotovoltaic systems J. Power Sources 501 229972

    [197] [197] Wang H Z, Chen Y Y and Li D H 2023 Two/quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications Int. J. Extrem. Manuf. 5 012004

    [198] [198] Zuo C, Bolink H J, Han H, Huang J, Cahen D and Ding L 2016 Advances in perovskite solar cells Adv. Sci.3 1500324

    [199] [199] Li Z, Klein T R, Kim D H, Yang M J, Berry J J, van Hest M and Zhu K 2018 Scalable fabrication of perovskite solar cells Nat. Rev. Mater. 3 18017

    [200] [200] Gao P, Gratzel M and Nazeeruddin M K 2014 Organohalide lead perovskites for photovoltaic applications Energy Environ. Sci. 7 2448–63

    [201] [201] Li C W et al 2020 Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability Nat. Energy 5 768–76

    [202] [202] Zhao D W et al 2017 Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells Nat. Energy 2 17018

    [203] [203] Aydin E, Allen T G, de Bastiani M, Xu L J, Avila J, Salvador M, Van Kerschaver E and de Wolf S 2020 Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells Nat. Energy 5 851–9

    [204] [204] Isikgor F H et al 2021 Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation Joule 5 1566–86

    [205] [205] Palmstrom A F et al 2019 Enabling flexible all-perovskite tandem solar cells Joule 3 2193–204

    [206] [206] Brinkmann K O et al 2022 Perovskite-organic tandem solar cells with indium oxide interconnect Nature604 280–6

    [207] [207] Hadadian M, Smatt J H and Correa-Baena J P 2020 The role of carbon-based materials in enhancing the stability of perovskite solar cells Energy Environ. Sci. 13 1377–407

    [208] [208] Bush K A et al 2017 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability Nat. Energy 2 17009

    [209] [209] Kim M, Motti S G, Sorrentino R and Petrozza A 2018 Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film Energy Environ. Sci. 11 2609–19

    [210] [210] Liu S F and Wang X Q 2021 Chapter nine—material epitaxy of AlN thin films Semicond. Semimet.107 283–311

    [211] [211] Ptak A J 2015 Principles of molecular beam epitaxy Handbook of Crystal Growth 2nd edn, ed T F Kuech(Elsevier) ch 4, pp 161–92

    [212] [212] Tanaka H 2015 Epitaxial growth of oxide films and nanostructures Handbook of Crystal Growth 2nd edn, ed T F Kuech (Elsevier) ch 13, pp 555–604

    [213] [213] de Arquer F P G, Armin A, Meredith P and Sargent E H 2017 Solution-processed semiconductors for next-generation photodetectors Nat. Rev. Mater. 2 16100

    [214] [214] Pan Q H, Chen S N, Zhang C, Zhou S H, Guo Y M and Shuai Y 2023 Relationship between infrared spectral emissivity and temperature distribution of thermophotovoltaic systems Appl. Therm. Eng.230 120857

    [215] [215] Geisz J F, France R M, Schulte K L, Steiner M A,Norman A G, Guthrey H L, Young M R, Song T and Moriarty T 2020 Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration Nat.Energy 5 326–35

    [216] [216] Cariou R et al 2018 III-V-on-silicon solar cells reaching 33%photoconversion efficiency in two-terminal configuration Nat. Energy 3 326–33

    [217] [217] Essig S et al 2017 Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions Nat. Energy 2 17144

    [218] [218] Ameri T, Li N and Brabec C J 2013 Highly efficient organic tandem solar cells: a follow up review Energy Environ.Sci. 6 2390–413

    [219] [219] Olabi A G, Elsaid K, Sayed E T, Mahmoud M S,Wilberforce T, Hassiba R J and Abdelkareem M A 2021 Application of nanofluids for enhanced waste heat recovery: a review Nano Energy 84 105871

    [220] [220] Ammar Y, Joyce S, Norman R, Wang Y D and Roskilly A P 2012 Low grade thermal energy sources and uses from the process industry in the UK Appl. Energy 89 3–20

    [221] [221] IEA 2022 Energy demand for iron and steel by fuel in the Net Zero Scenario, 2010–2030 (available at: www.iea.org/data-and-statistics/charts/energy-demand-for-iron-andsteel-by-fuel-in-the-net-zero-scenario-2010-2030)

    [222] [222] Zhang H, Wang H, Zhu X, Qiu Y-J, Li K, Chen R and Liao Q 2013 A review of waste heat recovery technologies towards molten slag in steel industry Appl. Energy112 956–66

    [223] [223] The World Steel Association Total production of crude steel(available at: https://worldsteel.org/steel-topics/statistics/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND)

    [224] [224] Brueckner S, Arbter R, Pehnt M and Laevemann E 2017 Industrial waste heat potential in Germany-a bottom-up analysis Energy Effic. 10 513–25

    [225] [225] Fu L, Li Y H, Wu Y T, Wang X Y and Jiang Y 2021 Low carbon district heating in China in 2025-a district heating mode with low grade waste heat as heat source Energy 230 120765

    [226] [226] Ma G-Y, Cai J-J, Zeng W-W and Dong H 2011 Analytical research on waste heat recovery and utilization of China’s iron & steel industry Energy Proc. 14 1022–8

    [227] [227] He K and Wang L 2017 A review of energy use and energy-efficient technologies for the iron and steel industry Renew. Sustain. Energy Rev. 70 1022–39

    [228] [228] Mousa E, Wang C, Riesbeck J and Larsson M 2016 Biomass applications in iron and steel industry: an overview of challenges and opportunities Renew. Sust. Energ Rev.65 1247–66

    [229] [229] Davis S J et al 2018 Net-zero emissions energy systems Science 360 eaas9793

    [230] [230] Sahu S G, Chakraborty N and Sarkar P 2014 Coal-biomass co-combustion: an overview Renew. Sustain. Energy Rev.39 575–86

    [231] [231] Flores-Granobles M and Saeys M 2020 Minimizing CO2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry Energy Environ. Sci. 13 1923–32

    [232] [232] Wang R Q, Jiang L, Wang Y D and Roskilly A P 2020 Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: a review J. Cleaner Prod. 274 122997

    [233] [233] Song Q F, Guo M-Z, Wang L and Ling T-C 2021 Use of steel slag as sustainable construction materials: a review of accelerated carbonation treatment Resour. Conserv.Recycl. 173 105740

    [234] [234] Fan Z Y and Friedmann S J 2021 Low-carbon production of iron and steel: technology options, economic assessment,and policy Joule 5 829–62

    [235] [235] Woolf D N, Kadlec E A, Bethke D, Grine A D, Nogan J J,Cederberg J G, Burckel D B, Luk T S, Shaner E A and Hensley J M 2018 High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter Optica 5 213–8

    [236] [236] Shoaei E 2016 Performance assessment of thermophotovoltaic application in steel industry Sol.Energy Mater. Sol. Cells 157 55–64

    [237] [237] Fraas L M 2014 Economic Potential for Thermophotovoltaic Electric Power Generation in the Steel Industry (IEEE)pp 766–70

    [238] [238] Utlu Z, Parali U and Gultekin ? 2018 Applicability of thermophotovoltaic technologies in the iron and steel sectors Energy Technol. 6 1039–51

    [239] [239] Ma H T, Du N, Zhang Z Y, Lyu F, Deng N, Li C and Yu S J 2017 Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry Renew. Sustain. Energy Rev.79 50–60

    [240] [240] Ren M, Lu P T, Liu X R, Hossain M S, Fang Y R,Hanaoka T, O’Gallachoir B, Glynn J and Dai H C 2021Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality Appl.Energy 298 117209

    [241] [241] Lu H Y, Price L and Zhang Q 2016 Capturing the invisible resource: analysis of waste heat potential in Chinese industry Appl. Energy 161 497–511

    [242] [242] Xuan Y N and Yue Q 2016 Forecast of steel demand and the availability of depreciated steel scrap in China Resour.Conserv. Recycl. 109 1–12

    [243] [243] Mehrpooya M, Khodayari R, Moosavian S M A and Dadak A 2020 Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system Energy Convers. Manage. 221 113177

    [244] [244] Datas A, Ramos A, Marti A, del Canizo C and Luque A 2016 Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion Energy107 542–9

    Tools

    Get Citation

    Copy Citation Text

    Shuni Chen, Yanming Guo, Qinghui Pan, Yong Shuai. A review on current development of thermophotovoltaic technology in heat recovery[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 22009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 12, 2023

    Accepted: --

    Published Online: Sep. 6, 2024

    The Author Email: Guo Yanming (guoyanming@hit.edu.cn)

    DOI:10.1088/2631-7990/ad1dca

    Topics