Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618002(2024)

Lensless Fiber-Optic Imaging via Coherent Light Modulation and Its Applications (Invited)

Shengfu Cheng1, Tianting Zhong1, Woo Chi Man1, Haoran Li1, and Puxiang Lai1,2,3、*
Author Affiliations
  • 1Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong , China
  • 2Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong , China
  • 3Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518063, Guangdong , China
  • show less
    References(162)

    [1] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).

    [2] Ouzounov D G, Wang T Y, Wang M R et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 14, 388-390(2017).

    [3] Zhao C Z, Chen S Y, Zhang L F et al. Miniature three-photon microscopy maximized for scattered fluorescence collection[J]. Nature Methods, 20, 617-622(2023).

    [4] Pilonis N D, Januszewicz W, di Pietro M. Confocal laser endomicroscopy in gastro-intestinal endoscopy: technical aspects and clinical applications[J]. Translational Gastroenterology and Hepatology, 7, 7(2022).

    [5] Gora M J, Suter M J, Tearney G J et al. Endoscopic optical coherence tomography: technologies and clinical applications[J]. Biomedical Optics Express, 8, 2405-2444(2017).

    [6] Li Y, Lu G X, Zhou Q F et al. Advances in endoscopic photoacoustic imaging[J]. Photonics, 8, 281(2021).

    [7] Horstmeyer R, Ruan H W, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).

    [8] Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).

    [9] Gigan S, Katz O, Rotter S et al. Roadmap on wavefront shaping and deep imaging in complex media[J]. Journal of Physics: Photonics, 4, 042501(2022).

    [10] Yu Z P, Li H H, Zhong T T et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields[J]. Innovation, 3, 100292(2022).

    [11] Jin X, Wang X Y, Du D Y et al. Progress and prospect of scattering imaging[J]. Laser & Optoelectronics Progress, 58, 1811002(2021).

    [12] Lai P X, Zhao Q, Zhou Y Y et al. Deep-tissue optics: technological development and applications (invited)[J]. Chinese Journal of Lasers, 51, 0107003(2024).

    [13] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [14] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [15] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [16] Papadopoulos I N, Farahi S, Moser C et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 20, 10583-10590(2012).

    [17] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [18] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).

    [19] Andresen E R, Sivankutty S, Tsvirkun V et al. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives[J]. Journal of Biomedical Optics, 21, 121506(2016).

    [20] Gomes A D, Turtaev S, Du Y et al. Near perfect focusing through multimode fibres[J]. Optics Express, 30, 10645-10663(2022).

    [21] Xiong W, Hsu C W, Bromberg Y et al. Complete polarization control in multimode fibers with polarization and mode coupling[J]. Light, Science & Applications, 7, 54(2018).

    [22] Morales-Delgado E E, Farahi S, Papadopoulos I N et al. Delivery of focused short pulses through a multimode fiber[J]. Optics Express, 23, 9109-9120(2015).

    [23] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).

    [24] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).

    [25] Porat A, Andresen E R, Rigneault H et al. Widefield lensless imaging through a fiber bundle via speckle correlations[J]. Optics Express, 24, 16835-16855(2016).

    [26] Bouchet D, Caravaca-Aguirre A M, Godefroy G et al. Speckle-correlation imaging through a kaleidoscopic multimode fiber[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, e2221407120(2023).

    [27] Amitonova L V, de Boer J F. Compressive imaging through a multimode fiber[J]. Optics Letters, 43, 5427-5430(2018).

    [28] Amitonova L V, de Boer J F. Endo-microscopy beyond the Abbe and Nyquist limits[J]. Light, Science & Applications, 9, 81(2020).

    [29] Caramazza P, Moran O, Murray-Smith R et al. Transmission of natural scene images through a multimode fibre[J]. Nature Communications, 10, 2029(2019).

    [30] Wu G H, Sun Y, Yin L F et al. High-definition image transmission through dynamically perturbed multimode fiber by a self-attention based neural network[J]. Optics Letters, 48, 2764-2767(2023).

    [31] Liu Z T, Wang L L, Meng Y et al. All-fiber high-speed image detection enabled by deep learning[J]. Nature Communications, 13, 1433(2022).

    [32] Sun J W, Wu J C, Wu S et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope[J]. Light, Science & Applications, 11, 204(2022).

    [33] Choi W, Kang M, Hong J H et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues[J]. Nature Communications, 13, 4469(2022).

    [34] Okamoto K[M]. Fundamentals of optical waveguides(2006).

    [35] Yariv A, Yeh P[M]. Photonics: optical electronics in modern communications(2007).

    [36] Kutz J N, Cox J A, Smith D. Mode mixing and power diffusion in multimode optical fibers[J]. Journal of Lightwave Technology, 16, 1195-1202(1998).

    [37] Fan S H, Kahn J M. Principal modes in multimode waveguides[J]. Optics Letters, 30, 135-137(2005).

    [38] Shemirani M B, Mao W, Panicker R A et al. Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling[J]. Journal of Lightwave Technology, 27, 1248-1261(2009).

    [39] Kahn J M, Ho K P, Shemirani M B. Mode coupling effects in multi-mode fibers[C](2012).

    [40] Juarez A A, Krune E, Warm S et al. Modeling of mode coupling in multimode fibers with respect to bandwidth and loss[J]. Journal of Lightwave Technology, 32, 1549-1558(2014).

    [41] Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres[J]. Nature Photonics, 9, 529-535(2015).

    [42] Li S H, Saunders C, Lum D J et al. Compressively sampling the optical transmission matrix of a multimode fibre[J]. Light, Science & Applications, 10, 88(2021).

    [43] Būtaitė U G, Kupianskyi H, Čižmár T et al. How to build the “optical inverse” of a multimode fibre?[J]. Intelligent Computing, 2022, 9816026(2022).

    [44] Li S H, Horsley S A R, Tyc T et al. Memory effect assisted imaging through multimode optical fibres[J]. Nature Communications, 12, 3751(2021).

    [45] Goodman J W[M]. Speckle phenomena in optics: theory and applications(2007).

    [46] Senarathna J, Rege A, Li N et al. Laser Speckle Contrast Imaging: theory, instrumentation and applications[J]. IEEE Reviews in Biomedical Engineering, 6, 99-110(2013).

    [47] Zhao Q, Li H H, Yu Z P et al. Speckle-based optical cryptosystem and its application for human face recognition via deep learning[J]. Advanced Science, 9, 2202407(2022).

    [48] Li H H, Cao F, Zhou Y Y et al. Interferometry-free noncontact photoacoustic detection method based on speckle correlation change[J]. Optics Letters, 44, 5481-5484(2019).

    [49] Zhong T T, Yu Z P, Li H H et al. Active wavefront shaping for controlling and improving multimode fiber sensor[J]. Journal of Innovative Optical Health Sciences, 12, 1942007(2019).

    [50] Daniel A, Liberman L, Silberberg Y. Wavefront shaping for glare reduction[J]. Optica, 3, 1104-1106(2016).

    [51] Cheng S F, Zhong T T, Woo C M et al. Alternating projection-based phase optimization for arbitrary glare suppression through multimode fiber[J]. Optics and Lasers in Engineering, 161, 107368(2023).

    [52] Li R J, Cao L C. Progress in phase calibration for liquid crystal spatial light modulators[J]. Applied Sciences, 9, 2012(2019).

    [54] Rosales-Guzmán C, Forbes A[M]. How to shape light with spatial light modulators(2017).

    [55] Allen J. Application of patterned illumination using a DMD for optogenetic control of signaling[J]. Nature Methods, 14, 1114(2017).

    [56] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 527, 447-470(2015).

    [58] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 22, 17999-18009(2014).

    [59] Zhuang Z Y, Ho H P. Application of digital micromirror devices (DMD) in biomedical instruments[J]. Journal of Innovative Optical Health Sciences, 13, 2030011(2020).

    [60] Turtaev S, Leite I T, Mitchell K J et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics[J]. Optics Express, 25, 29874-29884(2017).

    [61] Caravaca-Aguirre A M, Piestun R. Single multimode fiber endoscope[J]. Optics Express, 25, 1656-1665(2017).

    [62] Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix[J]. Nature Communications, 11, 6154(2020).

    [63] Ohayon S, Caravaca-Aguirre A, Piestun R et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging[J]. Biomedical Optics Express, 9, 1492-1509(2018).

    [64] Turtaev S, Leite I T, Altwegg-Boussac T et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging[J]. Light, Science & Applications, 7, 92(2018).

    [65] Stibůrek M, Ondráčková P, Tučková T et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics[J]. Nature Communications, 14, 1897(2023).

    [66] Scharf E, Dremel J, Kuschmierz R et al. Video-rate lensless endoscope with self-calibration using wavefront shaping[J]. Optics Letters, 45, 3629-3632(2020).

    [67] Zhao T R, Ma M T, Ourselin S et al. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy[J]. Photoacoustics, 25, 100323(2021).

    [68] Caravaca-Aguirre A M, Niv E, Conkey D B et al. Real-time resilient focusing through a bending multimode fiber[J]. Optics Express, 21, 12881-12887(2013).

    [69] Lee W H. Binary computer-generated holograms[J]. Applied Optics, 18, 3661-3669(1979).

    [70] Guan Y F, Katz O, Small E et al. Polarization control of multiply scattered light through random media by wavefront shaping[J]. Optics Letters, 37, 4663-4665(2012).

    [71] Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics[J]. Optics Express, 19, 18871-18884(2011).

    [72] Liu B H, Weiner A M. Space-time focusing in a highly multimode fiber via optical pulse shaping[J]. Optics Letters, 43, 4675-4678(2018).

    [73] Velsink M C, Amitonova L V, Pinkse P W H. Spatiotemporal focusing through a multimode fiber via time-domain wavefront shaping[J]. Optics Express, 29, 272-290(2021).

    [75] Weiss U, Katz O. Two-photon lensless micro-endoscopy with in situ wavefront correction[J]. Optics Express, 26, 28808-28817(2018).

    [76] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 36, 870-872(2011).

    [77] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).

    [78] Woo C M, Li H H, Zhao Q et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping[J]. Optics Express, 29, 18420-18426(2021).

    [79] Zhao Q, Woo C M, Li H H et al. Parameter-free optimization algorithm for iterative wavefront shaping[J]. Optics Letters, 46, 2880-2883(2021).

    [80] Yu H, Yao Z Y, Sui X B et al. Focusing through disturbed multimode optical fiber based on self-adaptive genetic algorithm[J]. Optik, 261, 169129(2022).

    [81] Woo C M, Zhao Q, Zhong T T et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).

    [82] Cheng S F, Zhong T T, Woo C M et al. Long-distance pattern projection through an unfixed multimode fiber with natural evolution strategy-based wavefront shaping[J]. Optics Express, 30, 32565-32576(2022).

    [83] Papadopoulos I N, Farahi S, Moser C et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 4, 260-270(2013).

    [84] Stasio N, Conkey D B, Moser C et al. Light control in a multicore fiber using the memory effect[J]. Optics Express, 23, 30532-30544(2015).

    [85] Kuschmierz R, Scharf E, Koukourakis N et al. Self-calibration of lensless holographic endoscope using programmable guide stars[J]. Optics Letters, 43, 2997-3000(2018).

    [87] Papadopoulos I N, Simandoux O, Farahi S et al. Optical-resolution photoacoustic microscopy by use of a multimode fiber[J]. Applied Physics Letters, 102, 211106(2013).

    [88] Morales-Delgado E E, Psaltis D, Moser C. Two-photon imaging through a multimode fiber[J]. Optics Express, 23, 32158-32170(2015).

    [89] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

    [90] Zhong J S, Wen Z, Li Q Z et al. Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform[J]. Advanced Photonics Nexus, 2, 056007(2023).

    [91] Plöschner M, Straka B, Dholakia K et al. GPU accelerated toolbox for real-time beam-shaping in multimode fibres[J]. Optics Express, 22, 2933-2947(2014).

    [92] Yu H, Lee K, Park Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes[J]. Optics Express, 25, 8036-8047(2017).

    [93] Zhao T R, Ourselin S, Vercauteren T et al. Seeing through multimode fibers with real-valued intensity transmission matrices[J]. Optics Express, 28, 20978-20991(2020).

    [94] Zhao T R, Deng L, Wang W et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber[J]. Optics Express, 26, 20368-20378(2018).

    [95] Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Physical Review Letters, 109, 203901(2012).

    [96] Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature Communications, 3, 1027(2012).

    [97] Deng L, Yan J D, Elson D S et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system[J]. Optics Express, 26, 18436-18447(2018).

    [98] N’Gom M, Norris T B, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).

    [99] Huang G Q, Wu D X, Luo J W et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter[J]. Optics Express, 28, 9487-9500(2020).

    [100] Huang G Q, Wu D X, Luo J W et al. Generalizing the Gerchberg-Saxton algorithm for retrieving complex optical transmission matrices[J]. Photonics Research, 9, 34-42(2020).

    [101] Cheng S F, Zhang X Y, Zhong T T et al. Nonconvex optimization for optimum retrieval of the transmission matrix of a multimode fiber[J]. Advanced Photonics Nexus, 2, 066005(2023).

    [102] Vasquez-Lopez S A, Turcotte R, Koren V et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber[J]. Light, Science & Applications, 7, 110(2018).

    [103] Kim D, Moon J, Kim M et al. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle[J]. Optics Letters, 39, 1921-1924(2014).

    [104] Bianchi S, di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy[J]. Lab on a Chip, 12, 635-639(2012).

    [105] Fan W R, Chen Z Y, Yakovlev V V et al. High-fidelity image reconstruction through multimode fiber via polarization-enhanced parametric speckle imaging[J]. Laser & Photonics Reviews, 15, 2000376(2021).

    [106] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering[J]. Light, Science & Applications, 8, 27(2019).

    [107] Zhao Q, Yu P P, Liu Y F et al. Light field imaging through a single multimode fiber for OAM-multiplexed data transmission[J]. Applied Physics Letters, 116, 181101(2020).

    [108] Loterie D, Farahi S, Papadopoulos I et al. Digital confocal microscopy through a multimode fiber[J]. Optics Express, 23, 23845-23858(2015).

    [109] Oh J, Lee C, Song G et al. Review of endomicroscopic imaging with coherent manipulation of light through an ultrathin probe[J]. Journal of Optical Microsystems, 3, 011004(2023).

    [110] Caravaca-Aguirre A M, Singh S, Labouesse S et al. Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination[J]. APL Photonics, 4, 096103(2019).

    [111] Osnabrugge G, Horstmeyer R, Papadopoulos I N et al. Generalized optical memory effect[J]. Optica, 4, 886-892(2017).

    [112] Liu H L, Lai P X, Han S S. Influence of anisotropy factor on the memory effect: a systematic study[J]. Optik, 231, 166366(2021).

    [113] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [114] Stasio N, Moser C, Psaltis D. Calibration-free imaging through a multicore fiber using speckle scanning microscopy[J]. Optics Letters, 41, 3078-3081(2016).

    [115] Amitonova L V, Mosk A P, Pinkse P W H. Rotational memory effect of a multimode fiber[J]. Optics Express, 23, 20569-20575(2015).

    [117] Caravaca-Aguirre A M, Carron A, Mezil S et al. Optical memory effect in square multimode fibers[J]. Optics Letters, 46, 4924-4927(2021).

    [118] Dong Z Y, Wen Z, Pang C L et al. A modulated sparse random matrix for high-resolution and high-speed 3D compressive imaging through a multimode fiber[J]. Science Bulletin, 67, 1224-1228(2022).

    [119] Caravaca-Aguirre A M, Poisson F, Bouchet D et al. Single-pixel photoacoustic microscopy with speckle illumination[J]. Intelligent Computing, 2, 11(2023).

    [120] Fan P F, Ruddlesden M, Wang Y F et al. Learning enabled continuous transmission of spatially distributed information through multimode fibers[J]. Laser & Photonics Reviews, 15, 2000348(2021).

    [121] Resisi S, Popoff S M, Bromberg Y. Image transmission through a dynamically perturbed multimode fiber by deep learning[J]. Laser & Photonics Reviews, 15, 2000553(2021).

    [122] Zhu C Y, Chan E A, Wang Y et al. Image reconstruction through a multimode fiber with a simple neural network architecture[J]. Scientific Reports, 11, 896(2021).

    [123] Liu Y F, Yu P P, Wu Y J et al. Single-shot wide-field imaging in reflection by using a single multimode fiber[J]. Applied Physics Letters, 122, 063701(2023).

    [124] Badt N, Katz O. Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography[J]. Nature Communications, 13, 6055(2022).

    [125] Lee S Y, Parot V J, Bouma B E et al. Confocal 3D reflectance imaging through multimode fiber without wavefront shaping[J]. Optica, 9, 112-120(2022).

    [126] Trägårdh J, Pikálek T, Šerý M et al. Label-free CARS microscopy through a multimode fiber endoscope[J]. Optics Express, 27, 30055-30066(2019).

    [127] Cifuentes A, Pikálek T, Ondráčková P et al. Polarization-resolved second-harmonic generation imaging through a multimode fiber[J]. Optica, 8, 1065-1074(2021).

    [128] Plöschner M, Kollárová V, Dostál Z et al. Multimode fibre: light-sheet microscopy at the tip of a needle[J]. Scientific Reports, 5, 18050(2015).

    [129] Zhao T R, Pham T T, Baker C et al. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery[J]. Biomedical Optics Express, 13, 4414-4428(2022).

    [130] Lin F R, Zhang C S, Zhao Y H et al. In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle[J]. Optics Letters, 47, 2137-2140(2022).

    [131] Wen Z, Dong Z Y, Deng Q L et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging[J]. Nature Photonics, 17, 679-687(2023).

    [132] Li C K, Le V, Wang X N et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications[J]. Laser & Photonics Reviews, 15, 1900084(2021).

    [133] Leite I T, Turtaev S, Boonzajer Flaes D E et al. Observing distant objects with a multimode fiber-based holographic endoscope[J]. APL Photonics, 6, 036112(2021).

    [134] Stellinga D, Phillips D B, Mekhail S P et al. Time-of-flight 3D imaging through multimode optical fibers[J]. Science, 374, 1395-1399(2021).

    [135] Orth A, Ploschner M, Maksymov I S et al. Extended depth of field imaging through multicore optical fibers[J]. Optics Express, 26, 6407-6419(2018).

    [136] Lan M Y, Guan D, Gao L et al. Robust compressive multimode fiber imaging against bending with enhanced depth of field[J]. Optics Express, 27, 12957-12962(2019).

    [137] Silveira B M, Pikálek T, Stibůrek M et al. Side-view holographic endomicroscopy via a custom-terminated multimode fibre[J]. Optics Express, 29, 23083-23095(2021).

    [138] Tsvirkun V, Sivankutty S, Baudelle K et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber[J]. Optica, 6, 1185-1189(2019).

    [139] Orth A, Ploschner M, Wilson E R et al. Optical fiber bundles: ultra-slim light field imaging probes[J]. Science Advances, 5, eaav1555(2019).

    [140] Dumas J P, Lodhi M A, Taki B A et al. Computational endoscopy: a framework for improving spatial resolution in fiber bundle imaging[J]. Optics Letters, 44, 3968-3971(2019).

    [141] Shin J, Tran D N, Stroud J R et al. A minimally invasive lens-free computational microendoscope[J]. Science Advances, 5, eaaw5595(2019).

    [142] Kang M, Choi W, Choi W et al. Fourier holographic endoscopy for imaging continuously moving objects[J]. Optics Express, 31, 11705-11716(2023).

    [143] Perperidis A, Dhaliwal K, McLaughlin S et al. Image computing for fibre-bundle endomicroscopy: a review[J]. Medical Image Analysis, 62, 101620(2020).

    [144] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143-S156(2007).

    [145] Tsakas A, Tselios C, Ampeliotis D et al. (INVITED)review of optical fiber technologies for optogenetics[J]. Results in Optics, 5, 100168(2021).

    [146] Zhong T T, Qiu Z H, Wu Y et al. Optically selective neuron stimulation with a wavefront shaping-empowered multimode fiber[J]. Advanced Photonics Research, 3, 2100231(2022).

    [147] Mohit F, Ricciardi A, Cusano A et al. Tapered multicore optical fiber probe for optogenetics[J]. Results in Optics, 4, 100109(2021).

    [148] Leite I T, Turtaev S, Jiang X et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre[J]. Nature Photonics, 12, 33-39(2018).

    [149] Anastasiadi G, Leonard M, Paterson L et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 26, 3557-3567(2018).

    [150] Yu Z P, Zhong T T, Li H H et al. Long distance all-optical logic operations through a single multimode fiber empowered by wavefront shaping[J]. Photonics Research, 12, 587-597(2024).

    [151] Li Y C, Xin H B, Zhang Y et al. Optical fiber technologies for nanomanipulation and biodetection: a review[J]. Journal of Lightwave Technology, 39, 251-262(2021).

    [152] Liu Z Q, Zhang B, Zhang H K et al. Multi-channel data transmission through a multimode fiber based on OAM phase encoding[J]. Optics Letters, 48, 5615-5618(2023).

    [153] Bianchi S, Rajamanickam V P, Ferrara L et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics[J]. Optics Letters, 38, 4935-4938(2013).

    [154] Papadopoulos I N, Farahi S, Moser C et al. Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media[J]. Optics Letters, 38, 2776-2778(2013).

    [155] Gu R Y, Mahalati R N, Kahn J M. Design of flexible multi-mode fiber endoscope[J]. Optics Express, 23, 26905-26918(2015).

    [156] Gordon G S D, Gataric M, Ramos A G C P et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access[J]. Physical Review X, 9, 041050(2019).

    [157] Chen H S, Fontaine N K, Ryf R et al. Remote spatio-temporal focusing over multimode fiber enabled by single-ended channel estimation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701809(2020).

    [158] Zheng Y J, Wright T, Wen Z et al. Single-ended recovery of optical fiber transmission matrices using neural networks[J]. Communications Physics, 6, 306(2023).

    [159] Lee S Y. Imaging through optical multimode fiber: towards ultra-thin endoscopy[D](2022).

    [160] Lee S Y, Parot V J, Bouma B E et al. Reciprocity-induced symmetry in the round-trip transmission through complex systems[J]. APL Photonics, 5, 106104(2020).

    [161] Sivankutty S, Tsvirkun V, Vanvincq O et al. Nonlinear imaging through a Fermat’s golden spiral multicore fiber[J]. Optics Letters, 43, 3638-3641(2018).

    [162] Sivankutty S, Bertoncini A, Tsvirkun V et al. Miniature 120-beam coherent combiner with 3D-printed optics for multicore fiber-based endoscopy[J]. Optics Letters, 46, 4968-4971(2021).

    [163] Lü Z P, Abrashitova K, de Boer J F et al. Sub-diffraction computational imaging via a flexible multicore-multimode fiber[J]. Optics Express, 31, 11249-11260(2023).

    Tools

    Get Citation

    Copy Citation Text

    Shengfu Cheng, Tianting Zhong, Woo Chi Man, Haoran Li, Puxiang Lai. Lensless Fiber-Optic Imaging via Coherent Light Modulation and Its Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Nov. 5, 2023

    Accepted: Dec. 5, 2023

    Published Online: Mar. 22, 2024

    The Author Email: Lai Puxiang (puxiang.lai@polyu.edu.hk)

    DOI:10.3788/LOP232715

    Topics