Optical Communication Technology, Volume. 48, Issue 6, 82(2024)
Optical fiber nonlinearity compensation scheme for PS system integrating triplet and complex-valued CNN
[1] [1] VASSILIEVA O, KIM I, IKEUCHI T. Enabling technologies for fiber nonlinearity mitigation in high capacity transmission systems [J]. Journal of Lightwave Technology, 2019, 37(1): 50-60.
[3] [3] CHO J, WINZER P J. Probabilistic constellation shaping for optical fiber communications [J]. Journal of Lightwave Technology, 2019, 37(6): 1590-1607.
[6] [6] ZHUGE Q, FU M, LIU Q, et al. Efficient and nonlinearity-tolerant probabilistic shaping for capacity-approaching optical transmission systems[C]// Optica Publishing Group. Proceedings of Advanced Photonics Congress (AP) 2020. Washington: OSA Technical Digest, 2020: SpTu2I-4-1 -Sp-Tu2I-4-2.
[7] [7] XU H, WANG Y J, WANG X S, et al. A novel nonlinear equalizer for probabilistic shaping 64-QAM based on constellation segmentation and support vector machine [J]. Electronics, 2022, 11(5): 671-1-671-12.
[8] [8] ROS F D, YANKOV M P, SILVA E P D, et al. Nonlinearity compensation through optical phase conjugation for improved transmission teach/rate [C]//IEEE. Proceedings of 20th International Conference on Transparent Optical Networks (ICTON). New York: IEEE, 2018: 1-2.
[10] [10] DU L B, LOWERY A J. Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems [J]. Optics Express, 2010, 18(16): 17075-17088.
[11] [11] IP E, KAHN J M. Compensation of dispersion and nonlinear impairments using digital backpropagation [J]. Journal of Lightwave Technology, 2008, 26(17-20): 3416-3425.
[12] [12] ZHAO L, WANG K, ZHOU W, et al. Demonstration of 73.15Gbit/s 4096-QAM OFDM D-band wireless transmission employing probabilistic shaping and volterra nonlinearity compensation [C]//IEEE. Proceedings of 2020 European Conference on Optical Communications (ECOC). New York: IEEE, 2020: 1-3.
[13] [13] TAO Z N, DOU L, YAN W Z, et al. Multiplier-free intra channel non-linearity compensating algorithm operating at symbol rate [J]. Journal of Lightwave Technology, 2011, 29(17): 2570-2576.
[14] [14] MALEKIHA M, TSELNIKER I, PLANT D V. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks [J]. Optics Express, 2016, 24(4): 4097-4108.
[15] [15] FU M F, WU Y W, YANG Z Y, et al. Low-complexity triplet-correlative perturbative fiber nonlinearity compensation for long-haul optical transmission [J]. Journal of Lightwave Technology, 2022, 40(16): 5416-5425.
[16] [16] WU Y W, LUN H Z, FU M F, et al. Degenerated look-up table-based perturbative fiber nonlinearity compensation algorithm for probabilistically shaped signals [J]. Optics Express, 2020, 28(9): 13401-13413.
[17] [17] LI B, BAI C, XU H, et al. A low complexity nonlinearity impairment compensation scheme assisted by label propagation algorithm [J]. Optics Communications, 2022, 506: 127547-1-127547-7.
[18] [18] LUO X Y, BAI C L, CHI X Y, et al. Nonlinear impairment compensation using transfer learning-assisted convolutional bidirectional long short-term memory neural network for coherent optical communication systems [J]. Pho-tonics, 2022, 9(12): 919-919.
[19] [19] HE P J, WU F L, YANG M, et al. A fiber nonlinearity compensation scheme with complex-valued dimension-reduced neural network [J]. IEEE Photonics Journal, 2021, 13(6): 1-7.
[20] [20] SIDELNIKOV O S, SKIDIN A S, SYGLETOS S, et al. Advanced methods to mitigate fiber nonlinearies using neural networks and probabilistic shaping [C]//Optica Publishing Group. Proceedings of Advanced Photonics 2018. Zurich: OSA Technical Digest(online), 2018: JTu5A.48-1-JTu5A.48-2.
[21] [21] WANG X S, ZHANG Q, XIN X J, et al. Robust weighted K-means clustering algorithm for a probabilistic-shaped 64QAM coherent optical communication system [J]. Optics Express, 2019, 27(26): 37601-34613.
[22] [22] NGUYEN T T, ZHANG T T, GIACOUMIDIS E, et al. Coupled transceiver-fiber nonlinearity compensation based on machine learning for probabilistic shaping system [J]. Journal of Lightwave Technology, 2021, 39(2): 388-399.
[23] [23] ZHANG S L, YAMAN F, NAKAMURA K, et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks [J]. Nature Communications, 2019, 10(1): 1-8.
[24] [24] LI C, WANG Y J, WANG J J, et al. Convolutional neural network-aided DP-64 QAM coherent optical communication systems[J]. Journal of Lightwave Technology, 2022, 40(9): 2880-2889.
[26] [26] SHAFRAN I, BAGBY T, SKERRY-RYAN R J. Complex evolution recurrent neural networks (ceRNNs)[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 15-20, 2018, Calgary. New York: IEEE, 2018: 5854-5858.
Get Citation
Copy Citation Text
FAN Yaxuan, WANG Mingjiao, DU Lei, QIAO Jingshuai, LAN Hailong, LI Xusheng, ZHANG Yining, YANG Lishan, XU Hengying, BAI Chenglin. Optical fiber nonlinearity compensation scheme for PS system integrating triplet and complex-valued CNN[J]. Optical Communication Technology, 2024, 48(6): 82
Category:
Received: Jan. 25, 2024
Accepted: Jan. 16, 2025
Published Online: Jan. 16, 2025
The Author Email: