Optics and Precision Engineering, Volume. 20, Issue 6, 1398(2012)
Hyperspectral image classification by steepest ascent relevance vector machine
[1] [1] HUGHES G F. On the mean accuracy of statistical pattern recognizers [J]. IEEE Transactions on Information Theory, 1968,14(1):55-63.
[2] [2] TADJUDIN S, LANDGREBE D A. Covariance estimation with limited training samples [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(4):2113-2118.
[3] [3] KUO B C, LANDGREBE D A. Nonparametric weighted feature extraction for classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(5):1096-1105.
[4] [4] SERPICO S B, BRUZZONE L. A new search algorithm for feature selection in hyperspectral remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1360-1367.
[5] [5] DUNDAR M M, LANDGREBE D A. A cost-effective semisupervised classifier approach with kernels [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(1):264-270.
[6] [6] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(8):1778-1790.
[7] [7] BAZI Y, MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11):3374-3385.
[8] [8] TIPPING M E. Sparse bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1:211-244.
[9] [9] DEMIR B, ERTURK S. Hyperspectral image classification using relevance vector machines [J]. IEEE GeoScience and Remote Sensing Letters, 2007,4(4):586-590.
[10] [10] FOODY G M. RVM-based multi-class classification of remotely sensed data [J]. International Journal of Remote Sensing, 2008,29(6):1817-1823.
[11] [11] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al.. Retrieval of oceanic chlorophyll concentration with relevance vector machines [J]. Remote Sensing of Environment, 2006,105:23-33.
[12] [12] DONG CH, ZHAO H J. Hyperspectral image classification and application based on relevance vector machine [J]. Journal of Remote Sensing, 2010,14(6):1279-1284.(in Chinese)
[13] [13] DONG CH, TIAN L F, ZHAO H J. Hyperspectral image classification by genetic relevance vector machine [J]. Journal of Shanghai Jiao Tong University, 2011,45(10):1516-1520.(in Chinese)
[14] [14] AVIRIS N W. Indiana’s Indian Pines Data Set [DB/OL].ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C, 1992.
Get Citation
Copy Citation Text
DONG Chao, TIAN Lian-fang. Hyperspectral image classification by steepest ascent relevance vector machine[J]. Optics and Precision Engineering, 2012, 20(6): 1398
Category:
Received: Feb. 9, 2012
Accepted: --
Published Online: Jun. 25, 2012
The Author Email: Chao DONG (dcAuto@scut.edu.cn)