Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 688(2025)
Research Progress on High-Temperature Ceramic Protective Coatings on C/C Composite Materials
[8] [8] SMEACETTO F, FERRARIS M, SALVO M. Multilayer coating with self-sealing properties for carbon-carbon composites[J]. Carbon, 2003, 41(11): 2105-2111.
[9] [9] OTSUKA A, SAKAMOTO K, MASUMOTO H. A multi-layer cvd-sic coating for oxidation protection of carbon/carbon composite[J]. J Soc Mater Sci Jpn, 1999, 48(9Appendix): 163-168.
[10] [10] DONG Q, YANG Z M. Effect of SiC on fabrication and properties of AlN/Mo/SiC composite ceramics[J]. Chin J Rare Met, 2011, 35(6): 904-908.
[11] [11] OGURI K, SEKIGAWA T, KOCHIYAMA J, et al. Catalycity measurement of oxidation-resistant CVD-SiC coating on C/C composite for space vehicle[J]. Mater Trans, 2001, 42(5): 856-861.
[12] [12] YANG H F, WANG H, RAN X Q. Overview on oxidation resist ance of carbon/carbon composites at high temperature[J]. Carbon Tech, 2000, (6): 22-28.
[14] [14] FAN S W, MA X, LI Z, et al. Design and optimization of oxidation resistant coating for C/C aircraft brake materials[J]. Ceram Int, 2018, 44(1): 175-182.
[15] [15] YAN J J, WU X M, LIU Q D, et al. Microstructure and oxidation behavior of SiOC coatings on C/C composites co-deposited with HMDS and TEOS by using CVD process[J]. Ceram Int, 2024, 50(5): 7888-7896.
[17] [17] NIU F X, WANG Y X, ABBAS I, et al. A MoSi2-SiOC-Si3N4/SiC anti-oxidation coating for C/C composites prepared at relatively low temperature[J]. Ceram Int, 2017, 43(3): 3238-3245.
[19] [19] ERFANMANESH M, BAKHSHI S R. Oxidation behavior of nanostructured and conventional MoSi2 plasma-sprayed coatings[J]. Ceram Int, 2018, 44(13): 15839-15844.
[20] [20] SUN J, FU Q G, HUO C X, et al. Oxidation response determined by multiphase-dependent melting degree of plasma sprayed MoSi2 on Nb-based alloy[J]. J Alloys Compd, 2018, 762: 922-932.
[21] [21] PAN Y, WANG S L. Insight into the oxidation mechanism of MoSi2: Ab-initio calculations[J]. Ceram Int, 2018, 44(16): 19583-19589.
[22] [22] WANG C C, LI K Z, HE D Y, et al. Oxidation behavior of plasma-sprayed MoSi2-Yb2O3 composite coating at 1700℃[J]. Ceram Int, 2020, 46(7): 9538-9547.
[23] [23] WU H, LI H J, MA C, et al. MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying[J]. J Eur Ceram Soc, 2010, 30(15): 3267-3270.
[24] [24] WU X M, YANG B B, LI Y P, et al. High temperature oxidation behaviors of C/C composites with SiOC coatings[J]. J Eur Ceram Soc, 2024, 44(6): 3537-3543.
[27] [27] MA Q F, FANG R S. Practical Manualon Physical Properties [M].Beijing: Agricultural Machinery Press, 1986
[28] [28] XU Y X, ZHENG W, DAI M Q, et al. Effect of TaSi2 addition on long-term ablation behavior of HfB2-SiC coating[J]. J Eur Ceram Soc, 2023, 43(14): 5802-5813.
[29] [29] Lee S J, Kim D K. Effect of TaB2 addition on the oxidation behaviors of ZrB2-SiC based ultra-high temperature ceramics[J]. Korean J Mater Res, 2010, 20(4): 217-222.
[30] [30] JIANG Y, LIU T Y, RU H Q, et al. Oxidation and ablation protection of multiphase Hf0.5Ta0.5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon[J]. Appl Surf Sci, 2018, 459: 527-536.
[31] [31] ZHANG M L, REN X R, CHU H A, et al. Oxidation inhibition behaviors of the HfB2-SiC-TaSi2 coating for carbon structural materials at 1700 ℃[J]. Corros Sci, 2020, 177: 108982.
[32] [32] ZHANG M C, WANG L Y, REN X R, et al. Oxygen barrier resistance of HfB2-MoSi2-TaB2 coatings in a wide temperature region[J]. Ceram Int, 2023, 49(15): 25504-25515.
[33] [33] JIN X C, FAN X L, LU C S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. J Eur Ceram Soc, 2018, 38(1): 1-28.
[34] [34] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5): 1347-1364.
[35] [35] PAUL A, VENUGOPAL S, BINNER J G P, et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation[J]. J Eur Ceram Soc, 2013, 33(2): 423-432.
[36] [36] PARTHASARATHY T A, RAPP R A, OPEKA M. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater, 2008, 55(17): 5999-6010.
[37] [37] MONTEVERDE F, BELLOSI A. The resistance to oxidation of an HfB2-SiC composite[J]. J Eur Ceram Soc, 2005, 25(7): 1025-1031.
[38] [38] MALLIK M, RAY K K, MITRA R. Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites[J]. J Eur Ceram Soc, 2011, 31(1/2): 199-215.
[39] [39] TONG M D, CHEN C J, FU Q G, et al. Exploring Hf-Ta-O precipitation upon ablation of Hf-Ta-Si-C coating on C/C composites[J]. J Eur Ceram Soc, 2022, 42(6): 2586-2596.
[42] [42] REN X R, LV J S, LI W, et al. Influence of MoSi2 on oxidation protective ability of TaB2-SiC coating in oxygen-containing environments within a broad temperature range[J]. J Adv Ceram, 2020, 9(6): 703-715.
[43] [43] ZHU X F, ZHANG Y L, ZHANG J, et al. Microstructure evolution and oxidation mechanism of HfB2-SiC coating on SiC-coated C/C composites at 1173K and 1773K[J]. Ceram Int, 2022, 48(20): 30807-30816.
[44] [44] LV J S, ZHANG Y L, LI W, et al. Microstructure evolution of HfB2-SiC/SiC coating for C/C composites during long-term oxidation at 1700℃[J]. Corros Sci, 2022, 206: 110524.
[45] [45] ZHU X F, ZHANG Y L, QIANG X F, et al. An oxidation protective coating prepared by SiC densifying HfB2-SiC skeleton for SiC-coated C/C composites at 1473, 1773, and 1973K[J]. Corros Sci, 2022, 207: 110559.
[46] [46] ZHOU C L, QI Y S, CHENG Y H, et al. ZrB2-SiC-Ta4HfC5/Ta4HfC5 oxidation-resistant dual-layer coating fabricated by spark plasma sintering for C/C composites[J]. J Mater Eng Perform, 2019, 28(1): 512-518.
[47] [47] JIANG Y, LIU T Y, RU H Q, et al. Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in situ reaction method to prevent graphite materials from oxidation and ablation[J]. Ceram Int, 2019, 45(5): 6541-6551.
[48] [48] REN Y, QIAN Y H, XU J J, et al. Oxidation and cracking/spallation resistance of ZrB2-SiC-TaSi2-Si coating on siliconized graphite at 1500℃ in air[J]. Ceram Int, 2020, 46(5): 6254-6261.
[49] [49] REN Y, QIAN Y H, XU J J, et al. Ultra-high temperature oxidation resistance of ZrB2-20SiC coating with TaSi2 addition on siliconized graphite[J]. Ceram Int, 2019, 45(12): 15366-15374.
[50] [50] WANG T Y, LUO R Y. Oxidation protection and mechanism of the HfB2-SiC-Si/SiC coatings modified by in situ strengthening of SiC whiskers for C/C composites[J]. Ceram Int, 2018, 44(11): 12370-12380.
[52] [52] ZHANG P, FU Q G, CHENG C Y, et al. Comparing oxidation behaviors at 1773K and 1973K of HfB2-MoSi2/SiC-Si coating prepared by a combination method of pack cementation, slurry painting and in situ synthesis[J]. Surf Coat Technol, 2020, 403: 126418.
[53] [53] ZHANG S B, FU Q G, DONG Z J, et al. Effect of curvature radius on the oxidation protective ability of HfB2-SiC-MoSi2-Si/SiC-Si coating for C/C composites[J]. Surf Coat Technol, 2024, 489: 131125.
[54] [54] ZHANG P, FU Q G, HU D, et al. Oxidation behavior of SiC-HfB2-Si coating on C/C composites prepared by slurry dipping combined with gaseous Si infiltration[J]. Surf Coat Technol, 2020, 385: 125335.
[55] [55] ZHU X F, OU C Y, LI T, et al. HfSi2-HfB2-SiC coating prepared at low temperature to protect SiC-coated C/C composites against oxidation at 1473-1973K[J]. Ceram Int, 2024, 50(8): 13490-13499.
[56] [56] ZHU X F, ZHANG Y L, SU Y Y, et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation[J]. J Eur Ceram Soc, 2021, 41(1): 114-120.
[57] [57] ZHU X F, ZHANG Y L, ZHANG J, et al. A gradient composite coating to protect SiC-coated C/C composites against oxidation at mid and high temperature for long-life service[J]. J Eur Ceram Soc, 2021, 41(16): 123-131.
[58] [58] WANG L, FU Q G, ZHAO F L, et al. Constructing self-healing ZrSi2-MoSi2 coating for C/C composites with enhanced oxidation protective ability[J]. Surf Coat Technol, 2018, 347: 257-269.
[59] [59] ASTAPOV A N, ZHESTKOV B E, POGOZHEV Y S, et al. The oxidation resistance of the heterophase ZrSi2-MoSi2-ZrB2 powders-derived coatings[J]. Corros Sci, 2021, 189: 109587.
[60] [60] WANG P P, LI H J, YUAN R M, et al. A CrSi2-HfB2-SiC coating providing oxidation and ablation protection over 1973 K for SiC coated C/C composites[J]. Corros Sci, 2020, 167: 108536.
[61] [61] ZHANG B, YI M Z, XIE A L, et al. A novel gradient CrSi2-ZrSi2-SiC-Si coating for long-term oxidation protection of C/C composites at 1773K[J]. J Eur Ceram Soc, 2024, 44(3): 1534-1542.
[62] [62] QUAN H F, LUO R Y, WANG L Y, et al. RETRACTED: Study on the antioxidation properties and mechanisms of SiC/Si-ZrB2-CrSi2/SiC multilayer coating related to strain compatibility and stress distribution via XRD and Raman spectra[J]. Compos Part B Eng, 2022, 228: 109452.
[63] [63] WANG C C, LI K Z, HE Q C, et al. Oxidation and ablation protection of plasma sprayed LaB6-MoSi2-ZrB2 coating for carbon/carbon composites[J]. Corros Sci, 2019, 151: 57-68.
[64] [64] WANG W Y, HU J B, TANG Y F, et al. Oxidation failure behavior and repair of the damaged SiC-ZrB2/SiC coating of C/C composites[J]. Appl Surf Sci, 2024, 673: 160865.
[65] [65] HUANG K J, XIA Y H, WANG A H. High temperature oxidation and oxyacetylene ablation properties of ZrB2-ZrC-SiC ultra-high temperature composite ceramic coatings deposited on C/C composites by laser cladding[J]. Coatings, 2023, 13(1): 173.
[66] [66] YANG X T, QUAN H F, WANG K. SiC/Si-ZrSi2-ZrB2-HfB2/SiC coating for oxidation protection of C/C composites prepared by three-step method[J]. J Alloys Compd, 2020, 836: 155532.
[67] [67] MA H B, ZOU J, ZHU J T, et al. Thermal and electrical transport in ZrB2-SiC-WC ceramics up to 1800℃[J]. Acta Mater, 2017, 129: 159-169.
[68] [68] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scr Mater, 2017, 129: 94-99.
[69] [69] ZENG Y, ZHANG W Z, XIONG X. Anti-oxidation mechanisms of the SiC/ZrB2-MoSi2 coating on the carbon/carbon composites[J]. Acta Mater Compos Sin, 2010, 27(3): 50-55.
[70] [70] ZHOU T, XIE Z F. Research progress of preparation of zirconium boride ceramics[J]. Chem Ind Eng Prog, 2013, 32(10): 2434-2439.
[71] [71] SCHELZ S, BRANLAND N, PLESSIS D, et al. Laser treatment of plasma-sprayed ZrSiO4 coatings[J]. Surf Coat Technol, 2006, 200(22/23): 6384-6388.
[72] [72] KAISER A, LOBERT M, TELLE R. Thermal stability of zircon (ZrSiO4)[J]. J Eur Ceram Soc, 2008, 28(11): 2199-2211.
[73] [73] YAO X Y, LI H J, ZHANG Y L, et al. A SiC-Si-ZrB2 multiphase oxidation protective ceramic coating for SiC-coated carbon/carbon composites[J]. Ceram Int, 2012, 38(3): 2095-2100.
[74] [74] CHEN M M, LI H J, YAO X Y, et al. High temperature oxidation resistance of La2O3-modified ZrB2-SiC coating for SiC-coated carbon/carbon composites[J]. J Alloys Compd, 2018, 765: 37-45.
[75] [75] QUAN H F, SUI S Y, WANG L Y, et al. A low-temperature preparation strategy of SiC/ZrB2-CrSi2-Si/SiC multilayer oxidation-resistant coating for C/C composites: Process, kinetics and mechanism research[J]. Appl Surf Sci, 2021, 562: 149993.
[77] [77] WANG C C, LI K Z, SHI X H, et al. Self-healing YSZ-La-Mo-Si heterogeneous coating fabricated by plasma spraying to protect carbon/carbon composites from oxidation[J]. Compos Part B Eng, 2017, 125: 181-194.
[78] [78] Wang R Q, Wang N, Zhu S Z, et al. Study on the mechanism of ultra-high temperature ablation of ZrB2-SiC-TaSi2 coatings by low-pressure plasma spraying on the C/C composites[J].Ceram Int, 2023, 49(7): 11344-11354.
[79] [79] JI X, CHEN Y X, YAO L, et al. Enhanced oxidation resistance of ZrB2-MoSi2 coating through MoSi2-TaSi2 double-silicide alloying modifying[J]. Corros Sci, 2024, 233: 112070.
[80] [80] LI Z, ZHENG F, GONG H Q, et al. Study on ZrSiO4-aluminosilicate glass coating with high infrared emissivity and anti-oxidation properties[J]. Compos Commun, 2017, 4: 16-19.
[81] [81] ZHEN Q, LI Z, HU P F, et al. A glass-ceramic coating with self-healing capability and high infrared emissivity for carbon/carbon composites[J]. Corros Sci, 2018, 141: 81-87.
[82] [82] XIE C, SONG S L, HE G Z, et al. The toughening design of multi-layer antioxidation coating on C/C matrix via SiC-SiCw transition layer grown in situ[J]. J Eur Ceram Soc, 2022, 42(1): 43-51.
[83] [83] GAO Y F, ZENG F H, WANG Z W, et al. Enhanced oxidation resistance and failure mechanism of carbon/carbon composites with ZrO2/ZrSiO4-glass composite coating[J]. Appl Surf Sci, 2022, 601: 154208.
[84] [84] DU W H, ZENG F H, GAO Y F, et al. Oxidation mechanism of HfC-TaC-B4C-SiC/ZrSiO4-glass coating with largely enhanced oxidation inhibition for C/C composites[J]. Surf Interfaces, 2024, 53: 105100.
[85] [85] MA H C, MIAO Q, LIANG W P, et al. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites[J]. Ceram Int, 2021, 47(5): 6728-6735.
[86] [86] ZHOU L, FU Q G, HU D, et al. A dense ZrB2-SiC-Si/SiC-Si coating to protect carbon/carbon composites against oxidation at 1773 K and 1973 K[J]. Corros Sci, 2021, 183: 109331.
[87] [87] WANG Z W, ZENG F H, LI Y, et al. Self-healing effect and oxidation resistance of ZrSiO4-glass coating for C/C composites at 1173K-1573K[J]. J Alloys Compd, 2019, 792: 496-504.
[88] [88] LIN H, LIANG W P, MIAO Q, et al. Investigation of the microstructure and oxidation behavior of monolayer and bilayer ZrB2-SiC-Y2O3/SiC coatings on C/C composites[J]. Surf Coat Technol, 2024, 487: 131007.
Get Citation
Copy Citation Text
WANG Luyan, LIU Rongjun, WANG Yanfei, LI Duan, MIAO Huaming. Research Progress on High-Temperature Ceramic Protective Coatings on C/C Composite Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 688
Category:
Received: Sep. 6, 2024
Accepted: Mar. 10, 2025
Published Online: Mar. 10, 2025
The Author Email: Rongjun LIU (rongjunliu@163.com)