Spectroscopy and Spectral Analysis, Volume. 39, Issue 10, 3292(2019)
XGBOOST Based Stellar Spectral Classification and Quantized Feature
[1] [1] Luo Ali, Zhao Yongheng, et al. Research in Astronomy and Astrophysics, 2015, 15(8): 1095.
[2] [2] Schierscher F, Paunzen E. Astronomische Nachrichten, 2011, 332(6): 597.
[3] [3] Hampton E J, Medling A M, Groves B, et al. Monthly Notices of the Royal Astronomical Society, 2017, 470: 3395.
[4] [4] Liu Chao, Cui Wenyuan, et al. Research in Astronomy and Astrophysics, 2015, 15(8): 1137.
[5] [5] Du Changde, Luo A, Yang H. New Astronomy, 2017, 51: 51.
[6] [6] Worthey G, Faber S M, Gonzalez J Jesus, et al. The Astrophysical Journal Supplement Series, 94(2): 687.
[8] [8] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. 785.
[9] [9] Gray R O, Corbally C J. Stellar Spectral Classification. Princeton University Press, 2009. 160.
Get Citation
Copy Citation Text
ZHANG Xiao, LUO A-li. XGBOOST Based Stellar Spectral Classification and Quantized Feature[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3292
Received: Sep. 7, 2018
Accepted: --
Published Online: Nov. 5, 2019
The Author Email: