Journal of Innovative Optical Health Sciences, Volume. 14, Issue 1, 2140002(2021)

Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images

Gu Zheng1,2,3, Yanfeng Jiang1,2,3, Ce Shi1,2,3, Hanpei Miao1,2,3, Xiangle Yu1,2,3, Yiyi Wang1,2,3, Sisi Chen1,2,3, Zhiyang Lin1,2,3, Weicheng Wang1,2,3, Fan Lu1,2,3、*, and Meixiao Shen1,2,3
Author Affiliations
  • 1School of Ophthalmology and Optometry Wenzhou Medical University Wenzhou, Zhejiang, P. R. China
  • 2Eye Hospital and School of Ophthalmology and Optometry Wenzhou Medical University Wenzhou, Zhejiang, P. R. China
  • 3National Clinical Research Center for Ocular Disease Wenzhou, Zhejiang, P. R. China
  • show less
    Figures & Tables(0)
    Tools

    Get Citation

    Copy Citation Text

    Gu Zheng, Yanfeng Jiang, Ce Shi, Hanpei Miao, Xiangle Yu, Yiyi Wang, Sisi Chen, Zhiyang Lin, Weicheng Wang, Fan Lu, Meixiao Shen. Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images[J]. Journal of Innovative Optical Health Sciences, 2021, 14(1): 2140002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 30, 2020

    Accepted: Nov. 23, 2020

    Published Online: Apr. 7, 2021

    The Author Email: Lu Fan (lufan62@mail.eye.ac.cn)

    DOI:10.1142/s1793545821400022

    Topics