Chinese Journal of Quantum Electronics, Volume. 38, Issue 3, 374(2021)
Monogamy relation of squared Rényi entropy entanglement
[1] [1] Koashi M, Winter A. Monogamy of quantum entanglement and other correlations[J]. Physical Review A, 2004, 69(2): 022309.
[2] [2] Breuer H P. Optimal entanglement criterion for mixed quantum states[J]. Physical Review Letters, 2006, 97(8): 080501.
[3] [3] De Vicente J I. Lower bounds on concurrence and separability conditions[J]. Physical Review A, 2007, 75(5): 052320.
[4] [4] Coffman V, Kundu J, Wootters W K. Distributed entanglement[J]. Physical Review A, 2000, 61(5): 052306.
[5] [5] Osborne T J, Verstraete F. General monogamy inequality for bipartite qubit entanglement[J]. Physical Review Letters, 2006, 96(22): 220503.
[6] [6] Hiroshima T, Adesso G, Illuminati F. Monogamy inequality for distributed Gaussian entanglement[J]. Physical Review Letters, 2007, 98(5): 050503.
[7] [7] Yang D, Horodecki K, Horodecki M, et al. Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3375-3387.
[8] [8] He H, Vidal G. Disentangling theorem and monogamy for entanglement negativity[J]. Physical Review A, 2015, 91: 012339.
[9] [9] Bai Y K, Xu Y F, Wang Z D. General monogamy relation for the entanglement of formation in multiqubit systems[J]. Physical Review Letters, 2014, 113(10): 100503.
[10] [10] Song W, Bai Y K, Yang M, et al. Generally monogamy relation of multiqubit systems in terms of squared Rényi-α entanglement[J]. Physical Review A, 2016, 93(2): 022306.
[11] [11] Yuan G M, Song W, Yang M, et al. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement[J]. Scientific Reports, 2016, 6(1): 28719.
[12] [12] Zhu X N, Fei S M. Generalized monogamy relations of concurrence for N-qubit systems[J]. Physical Review A, 2015, 92(6): 062345.
[13] [13] Luo Y, Li Y M. Monogamy of α-th power entanglement measurement in qubit systems[J]. Annals of Physics, 2015, 362: 511-520.
[14] [14] Luo Y, Tian T, Shao L H, et al. General monogamy of Tsallis q-entropy entanglement in multiqubit systems[J]. Physical Review A, 2016, 93(6): 062340.
[15] [15] Jin Z X, Li J, Li T, et al. Tighter monogamy relations in multiqubit systems[J]. Physical Review A, 2018, 97(3): 032336.
[16] [16] Zhao J Q, Cao L Z, Yang Y, et al. Tripartite entanglement and nonlocality in three-photon generalized GHZ states[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 583-588.
[18] [18] Zhao J Q, Cao L Z, Yang Y, et al. Nonlocality and robustness in two-photon entangled system[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 451-454.
[20] [20] Zhu X N, Jin Z X, Fei S M, et al. Polygamy inequalities for qubit systems[J]. International Journal of Theoretical Physics, 2019, 58(8): 2488-2496.
[21] [21] Yang L M, Chen B, Fei S M, et al. Tighter constraints of multiqubit entanglement[J]. Communications in Theoretical Physics, 2019, 71(5): 75-84.
[22] [22] Horodecki R, Horodecki P, Horodecki M. Quantum α-entropy Inequalities:Independent condition for localrealism?[J]. Physics Letters A, 1996, 210(6): 377-381.
Get Citation
Copy Citation Text
YUAN Guangming, DONG Minghui, WANG Xuewen, TANG Shunlei, BAI Zhiming. Monogamy relation of squared Rényi entropy entanglement[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 374
Category:
Received: Oct. 17, 2019
Accepted: --
Published Online: Sep. 3, 2021
The Author Email: Guangming YUAN (yuan949147646@163.com)