Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500002(2023)

Review of Short Cavity Ultra-Narrow Linewidth Low Noise Fiber Laser Technology

Meng Zou1,2, He Xiao1,2, Qingguo Song1,2, Xiangpeng Xiao1,2, Kai Shen2, Qizhen Sun1,2, and Zhijun Yan1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Wuxi Research Institute, Huazhong University of Science and Technology, Wuxi 214174, Jinagsu, China
  • show less
    References(75)

    [1] Liu Y L, Zhang W T, Xu T W et al. Fiber laser sensing system and its applications[J]. Photonic Sensors, 1, 43-53(2011).

    [2] Ronnekleiv E, Lovseth S W, Kringlebotn J T. Er-doped fiber distributed feedback lasers: properties, applications and design considerations[J]. Photonics Fabrication, 4943, 69-80(2022).

    [3] Qi H F, Song Z Q, Ni J S et al. An amplified distributed feedback fiber laser for distributed and interference sensing[J]. Proceedings of SPIE, 10244, 1024412(2017).

    [4] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [5] Campbell S L, Hutson R B, Marti G E et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 358, 90-94(2017).

    [6] Ludlow A D, Boyd M M. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2014).

    [7] Brodnik G M, Harrington M W, Dallyn J H et al. Optically synchronized fibre links using spectrally pure chip-scale lasers[J]. Nature Photonics, 15, 588-593(2021).

    [8] Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 29, 1802-1807(2011).

    [9] Huang S H, Zhu T, Yin G L et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering[J]. Optics Letters, 42, 5286-5289(2017).

    [16] Foster S, Cranch G A, Tikhomirov A. Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers[J]. Physical Review A, 79, 053802(2009).

    [17] Schawlow A L, Townes C H. Infrared and optical lasers[J]. Naval Engineers Journal, 73, 45-50(1961).

    [18] Foster S, Tikhomirov A, Milnes M. Fundamental thermal noise in distributed feedback fiber lasers[J]. IEEE Journal of Quantum Electronics, 43, 378-384(2007).

    [19] Foster S B, Tikhomirov A E. Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers[J]. IEEE Journal of Quantum Electronics, 46, 734-741(2010).

    [20] Iiyama K, Hayashi K, Ida Y et al. Delayed self-homodyne method using solitary monomode fibre for laser linewidth measurements[J]. Electronics Letters, 25, 1589-1590(1989).

    [21] Taccheo S, Laporta P, Svelto O et al. Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser[J]. Optics Letters, 21, 1747-1749(1996).

    [22] Zhang F, Zhu J, Wang H et al. Intensity noise of erbium doped fiber laser at low frequency suppression through optoelectronic feedback[J]. Chinese Journal of Quantum Electronics, 29, 311-315(2012).

    [23] Zhan B, Xu S H, Mo S P et al. Study on the relaxation oscillation suppression in a short-cavity single-frequency DBR fiber laser[J]. Laser & Optoelectronics Progress, 50, 090602(2013).

    [24] Li C, Xu S H, Xiao Y et al. Simultaneously reducing the intensity and frequency noise of single-frequency phosphate fiber laser[J]. Journal of Optics, 17, 075802(2015).

    [25] Xiao Y, Li C, Xu S H et al. Simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a DBR single-frequency phosphate fiber laser[J]. Chinese Physics Letters, 32, 064205(2015).

    [26] Zhang Q, Hou Y B, Wang X et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors[J]. Optics Letters, 45, 4911-4914(2020).

    [27] Yamada M. Analysis of intensity and frequency noises in semiconductor optical amplifier[J]. IEEE Journal of Quantum Electronics, 48, 980-990(2012).

    [28] Danion G, Bondu F, Loas G et al. GHz bandwidth noise eater hybrid optical amplifier: design guidelines[J]. Optics Letters, 39, 4239-4242(2014).

    [29] Pan Z Q, Zhou J, Yang F et al. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer[J]. Laser Physics, 23, 035105(2013).

    [30] Feng Z M, Li C, Xu S H et al. Significant intensity noise suppression of single-frequency fiber laser via cascading semiconductor optical amplifier[J]. Laser Physics Letters, 12, 095101(2015).

    [31] Zhao Q L, Xu S H, Zhou K J et al. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser[J]. Optics Letters, 41, 1333-1335(2016).

    [32] Huang X, Zhao Q L, Lin W et al. Linewidth suppression mechanism of self-injection locked single-frequency fiber laser[J]. Optics Express, 24, 18907-18916(2016).

    [33] Zhao Y J, Wang Q P, Chang J et al. Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking[J]. Laser Physics Letters, 9, 739-743(2012).

    [34] Hou Y B, Zhang Q, Wang P. Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop[J]. Optics Express, 24, 12991-12999(2016).

    [35] Ji J R, Wang H T, Ma J et al. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration[J]. Optics Letters, 47, 1525-1528(2022).

    [36] Li C, Xu S H, Huang X et al. All-optical frequency and intensity noise suppression of single-frequency fiber laser[J]. Optics Letters, 40, 1964-1967(2015).

    [37] Huang Z P, Deng H Q, Yang C S et al. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm[J]. Optics Express, 25, 1535-1541(2017).

    [38] Zhao Q L, Zhang Z T, Wu B et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection[J]. Photonics Research, 6, 326-331(2018).

    [39] Zhang L Z, Liu Y F. Environmental impact resistant phase shift grating packaging structure for fiber lasers[P].

    [40] Xue L F, Li F, Liu Y L. Packaging structure of distributed feedback fiber laser[P].

    [41] Song Z Q, Wang C, Qi H F et al. Packaging structure of distributed feedback fiber laser[P].

    [42] Song Z Q, Wang W T, Qi H F et al. Packaging technology of distributed feedback fiber laser[J]. Acta Photonica Sinica, 45, 0814005(2016).

    [43] Pedersen J E, Beukema M, Poulsen C V et al. Packaging of an optical fiber laser[P].

    [44] Ying K, Liang H, Chen D J et al. Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect[J]. Optics Express, 28, 23717-23727(2020).

    [45] Zhao Q L, Zhou K J, Wu Z S et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser[J]. Optics Letters, 43, 42-45(2018).

    [46] Zang E J, Cao J P, Li Y et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 56, 673-676(2007).

    [47] Yu X, Lü M J, Zhang X et al. Research on frequency locking of 1560 nm fiber laser based on rubidium atomic modulation transfer spectroscopy technology[J]. Chinese Journal of Lasers, 49, 0301002(2022).

    [48] Wei S S, Liu Y H, Chen Q F et al. Sideband-locked high-power 780 nm laser source for precise measurement based on Rb atoms[J]. Chinese Journal of Lasers, 48, 0701008(2021).

    [49] Hong Y, Hou X, Chen D J et al. Research on frequency stabilization technology of modulation transfer spectroscopy based on Rb87[J]. Chinese Journal of Lasers, 48, 2101003(2021).

    [50] Cranch G A. Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback[J]. Optics Letters, 27, 1114-1116(2002).

    [51] McRae T G, Ngo S, Shaddock D A et al. Frequency stabilization for space-based missions using optical fiber interferometry[J]. Optics Letters, 38, 278-280(2013).

    [52] Kéfélian F, Jiang H F, Lemonde P et al. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line[J]. Optics Letters, 34, 914-916(2009).

    [53] Jiang H F, Kefelian F, Lemonde P et al. An agile laser with ultra-low frequency noise and high sweep linearity[J]. Optics Express, 18, 3284-3297(2010).

    [54] Yang F, Chen D J, Pan Z Q et al. Short linear cavity single-frequency fiber laser with active frequency stabilization by fiber Bragg grating[J]. Chinese Journal of Lasers, 39, 0902005(2012).

    [55] Alnis J, Schliesser A, Wang C Y et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization[J]. Physical Review A, 84, 011804(2011).

    [56] Lim J, Savchenkov A A, Dale E et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization[J]. Nature Communications, 8, 8(2017).

    [57] Seel S, Storz R, Ruoso G et al. Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level[J]. Physical Review Letters, 78, 4741-4744(1997).

    [58] Young B C, Cruz F C, Itano W M et al. Visible lasers with Subhertz linewidths[J]. Physical Review Letters, 82, 3799-3802(1999).

    [59] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).

    [60] Häfner S, Falke S, Grebing C et al. 8×10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    [61] Matei D G, Legero T, Häfner S et al. 1.5  μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017).

    [62] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [63] Shen H, Li L F. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization[J]. Physics, 45, 441-448(2016).

    [64] Tai Z Y. Research on key technologies of 1.5 μm cavity stabilized ultra-stable laser[D], 6(2018).

    [65] Tai O, Yan L L, Zhang Y Y et al. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth[J]. Chinese Physics Letters, 34, 090602(2017).

    [66] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [67] Vishnyakova G A, Kryuchkov D S, Zhadnov N O et al. Ultra-stable silicon cavities for fundamental researches and applications[C], 2241, 020037(2020).

    [68] Ronnekleiv E, Zervas M N, Kringlebotn J T. Modeling of polarization-mode competition in fiber DFB lasers[J]. IEEE Journal of Quantum Electronics, 34, 1559-1569(1998).

    [69] Zervas M N, Wilmshurst R, Walker L M B. Twisted hi-bi fiber distributed-feedback lasers with controllable output state of polarization[J]. Optics Letters, 38, 1533-1535(2013).

    [70] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [71] Sun W J, Shi J D, Yu Y J et al. All-fiber 1.55 µm erbium-doped distributed-feedback laser with single-polarization, single-frequency output by femtosecond laser line-by-line direct-writing[J]. OSA Continuum, 4, 334-344(2021).

    [72] Fan W, Chen B, Li X C et al. Stress-induced single polarization DFB fiber lasers[J]. Optics Communications, 204, 157-161(2002).

    [73] Guo K K, He J, Cao S Q et al. Beat frequency tuning in dual-polarization distributed feedback fiber laser using side polishing technique[J]. Optics Express, 26, 34699-34710(2018).

    [74] Qi Z N, Yin T C, Jiang X G et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm[J]. Applied Optics, 60, 2833-2838(2021).

    [75] Yamashita S, Cowle G J. Single-polarization operation of fiber distributed feedback (DFB) lasers by injection locking[J]. Journal of Lightwave Technology, 17, 509-513(1999).

    [76] Mo S P, li Z B, Huang X et al. 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm[J]. Laser Physics Letters, 11, 035101(2014).

    [77] Giunta M, Lessing M, Yu J L et al. Photonic microwave oscillator based on an ultra-stable-laser and an optical frequency comb[C], 591-594(2021).

    [78] Li Y, Lin Y G, Wang Q et al. Ultra-stable laser technology and its realization in strontium optical lattice clock[J]. Metrology Science and Technology, 65, 62-66(2021).

    [79] Wellmann F, Steinke M, Meylahn F et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors[J]. Optics Express, 27, 28523-28533(2019).

    [80] Clément D, Germain G, Yves-Vincent B et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).

    [81] Jiang Y Y, Bi Z Y, Ma L S. Sub-hertz-linewidth frequency-stabilized lasers[J]. Chinese Journal of Nature, 41, 29-34(2019).

    Tools

    Get Citation

    Copy Citation Text

    Meng Zou, He Xiao, Qingguo Song, Xiangpeng Xiao, Kai Shen, Qizhen Sun, Zhijun Yan. Review of Short Cavity Ultra-Narrow Linewidth Low Noise Fiber Laser Technology[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 12, 2022

    Accepted: Jul. 11, 2022

    Published Online: Aug. 11, 2023

    The Author Email: Yan Zhijun (yanzhijun@hust.edu.cn)

    DOI:10.3788/LOP221579

    Topics