Acta Physica Sinica, Volume. 69, Issue 15, 157801-1(2020)

Research progress of photonics devices on lithium-niobate-on-insulator thin films

Geng-Lin Li... Yue-Chen Jia* and Feng Chen* |Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China
  • show less
    Figures & Tables(13)
    Flow chart of preparation of single crystal lithium niobate films by direct bonding of wafers.
    Flow chart of fabricating LN microdisk using femtosecond laser micromachining: (a) Depositing metallic chromium on LN sample surface; (b) transferring microdisk graphics onto chrome layer by femtosecond laser micromachining; (c) transferring microdisk pattern onto LN film by CMP; (d) wet etching removes chromium film and SiO2[20].
    Preparation process of PPLN ridge waveguide: (a) The x-cut LN thin film sample to be processed; (b) deposition of comb-shaped metal polarized electrode; (c) application of polarization voltage to metal electrode; (d) the fabricated PPLN ridge waveguide; (e) top view of the PPLN ridge waveguide, the dark area is the domain inversion area; (f) PPLN ridge waveguide sidewall after CMP or FIB fabricating[35].
    (a) A SEM coloring image of polished micro-ring resonator (LN is yellow; SiO2 is gray); (b)−(d) influences of different polishing parameters on the final sidewall roughness[37].
    Schematic of using CMP technology to prepare LNOI on-chip optics: (a) Depositing Cr film on LNOI by magnetron sputtering; (b) femtosecond laser processing defines the pattern to be processed; (c) CMP process to remove excess LN; (d) use Cr etchant to remove the etching mask and secondary CMP process; (e) schematic diagram of CMP instrument[38].
    (a), (b) SEM images of the LNOI modulator; (c) enlarged view of the coupling area of the track modulator; (d) enlarged view of the electrode and optical waveguide; (e) transmission spectrum of MZI modulator; (f) electro-optical bandwidth of racetrack modulator (9 V, 1480−1580 nm)[47].
    False-colored SEM image of LNOI plasma electro-optic directional coupler[51].
    (a) Spectrum of the cascade process: the pump wavelength is fixed at 1534.9 nm, and the signal wavelength is at 1541.8 and 1548.9 nm. (b) Effective FWM process in LN microdisk, FW idler power dependence and theoretical fitting, the signal power is maintained at 5 mW[55].
    (a) Photograph of the LN microring resonator, the black line is an etched optical waveguide, and the yellow area is a gold electrode. (b) The output spectrum of the EO frequency comb generated from the micro-ring resonator. The left illustration shows an enlarged view of several comb teeth. The power variation between the comb teeth is about 0.1 dB. The right inset shows the transmission spectra of several different modulation indices (β)[64].
    (a), (b) Generation of a broadband frequency comb: The frequency comb spectrum is generated when the pump power is 300 mW and the input signal resonates with the (a) TM mode and the (b) TE mode; (c) SEM image of nanophotonic circuit on LN film[65].
    (a) Micrograph of M-Z interferometer type and (b) resonator type acousto-optic modulator; (c) SEM image of the optical waveguide; (d) SEM image of the IDT region[68].
    (a) SEM image of single mode tapered fiber[69]; (b) SEM image of bilayer tapered mode converter[2].
    • Table 1.

      Main performance parameters of LN on-chip photonic devices fabricated by different fabrication techniques.

      不同加工手段制备的LN片上光子学器件的主要性能参数

      View table
      View in Article

      Table 1.

      Main performance parameters of LN on-chip photonic devices fabricated by different fabrication techniques.

      不同加工手段制备的LN片上光子学器件的主要性能参数

      加工图案微纳加工技术尺寸损耗(测量波长)品质因子(测量波长/nm)
      微盘[13]紫外光刻技术d = 50 μm 1.5 × 106 (1551.4)
      微盘[12]r = 50 μm 3.1 × 105 (1550)
      微盘[40]电子束曝光技术r = 25 μm 2.9 × 105 (1502)
      微盘[41]r = 25 μm 2.69 × 105 (1548.78)
      微环[1]r = 100 μm 1.1 × 107 (637)
      微环[42]r = 80 μm ~107 (1590)
      光子晶体微腔[14]w = 750 nm 1.09 × 105 (1452)
      h = 250 nm
      a = 600 nm
      微盘[21]飞秒激光微加工d = 29.92 μm 9.61 × 106 (1547.8)
      微盘[20]d = 140 μm 1.46 × 107 (773.49)
      双微盘[43]d = 29.92 μm 1.35 × 105 (1528.5)
      g = 138 nm
      脊形波导[1]电子束曝光技术W = 480 nm 6 dB/m (635 nm)
      H = 120 nm
      脊形波导[42]W = 2.4 μm (2.7 ± 0.3) dB/m (1590 nm)
      H = 0.25 μm
      脊形波导[29]异质集成W = 1.3 μm 0.1 dB/m (1550 nm)
      H = 0.5 μm
      脊形波导[37]化学机械抛光W = 4 μm 4 dB/m (1550 nm)
      H = 3 μm
    Tools

    Get Citation

    Copy Citation Text

    Geng-Lin Li, Yue-Chen Jia, Feng Chen. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69(15): 157801-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 27, 2020

    Accepted: --

    Published Online: Dec. 30, 2020

    The Author Email: Chen Feng (drfchen@sdu.edu.cn)

    DOI:10.7498/aps.69.20200302

    Topics