Semiconductor Optoelectronics, Volume. 45, Issue 1, 11(2024)

Research Progress of Hexagonal Boron Nitride Memristor

WANG Sibo... LIU Xiaohang and CHEN Zhanguo |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(51)

    [1] [1] Chua L. Memristor-the missing circuit element[J]. IEEE Trans. on Circuit Theory, 1971, 18(5): 507-519.

    [2] [2] Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.

    [3] [3] Yin J, Li J, Hang Y, et al. Boron nitride nanostructures: Fabrication, functionalization and applications[J]. Small, 2016, 12(22): 2942-2968.

    [4] [4] Cao X K, Clubine B, Edgar J H, et al. Two-dimensional excitons in three-dimensional hexagonal boron nitride[J]. Appl. Phys. Lett., 2013, 103(19): 191106.

    [5] [5] Pacile D, Meyer J C, Girit  , et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes[J]. Appl. Phys. Lett., 2008, 92(13): 223-225.

    [6] [6] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. J. of Materials Chemistry, 2011, 21(32): 11862-11866.

    [7] [7] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnol., 2008, 3(9): 563-568.

    [8] [8] Cao L, Emami S, Lafdi K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase[J]. Materials Express, 2014, 4(2): 165-171.

    [9] [9] Chen T A, Chuu C P, Tseng C C, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111)[J]. Nature, 2020, 579(7798): 219-223.

    [10] [10] Siegel G, Gryzbowcki G, Hilton A, et al. Growth of multi-layer hBN on Ni(111) substrates via MOCVD[J]. Crystals, 2019, 9(7): 339.

    [11] [11] Camilli L, Sutter E, Sutter P. Growth of two-dimensional materials on non-catalytic substrates: h-BN/Au(111)[J]. 2D Materials, 2014, 1(2): 025003.

    [12] [12] Sutter P, Lahiri J, Zahl P, et al. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films[J]. Nano Lett., 2013, 13(1): 276-281.

    [13] [13] Lee J, Lee S, Noh T. Resistive switching phenomena: A review of statistical physics approaches[J]. Chemicals & Chemistry, 2015, 2(3): 1129.

    [14] [14] Lv F, Yang R, Guo X. Analog and digital reset processes observed in Pt/CuO/Pt memristive devices[J]. Solid State Ionics, 2017, 303: 161-166.

    [15] [15] Yu S, Gao B, Fang Z, et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation[J]. Adv. Materials, 2013, 25(12): 1774-1779.

    [16] [16] Seokjin K, Young-Chul S, Naidu C, et al. A programmable analog CMOS synapse for neural networks[J]. Analog Integrated Circuits and Signal Processing, 1992, 2(4): 345-352.

    [17] [17] Jang B, Kim S, Yang S, et al. Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system[J]. Nano Lett., 2019, 1(4): 118-122.

    [18] [18] Choi H, Jung H, Lee J, et al. An electrically modifiable synapse array of resistive switching memory[J]. Nanotechnology, 2009, 20(34): 345201.

    [19] [19] Shen Z, Zhao C, Qi Y, et al. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application[J]. Nanomaterials, 2020, 10(8): 1437.

    [20] [20] Nuo X, Lifeng L, Xiao S, et al. Characteristics and mechanism of conduction/set process in TiN-ZnO-Pt resistance switching random-access memories[J]. Appl. Phys. Lett., 2008, 92(23): 232112.

    [21] [21] Pan C, Ji Y, Xiao N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride[J]. Advanced Functional Materials, 2017, 27(10): 1604811.

    [22] [22] Qian K, Tay R Y, Nguyen V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications[J]. Advanced Functional Materials, 2016, 26(13): 2176-2184.

    [23] [23] Hubbard W, Kerelsky A, Jasmin G, et al. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching[J]. Nano Lett., 2015, 15(8): 5665.

    [24] [24] Yang Y, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories[J]. Nature Communications, 2012, 3(3): 732.

    [25] [25] Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: The role of each type of defect[J]. Advanced Materials, 2021, 33(41): 2103656.

    [26] [26] Zobelli A, Ewels C P, Gloter A, et al. Vacancy migration in hexagonal boron nitride[J]. Physical Review B, 2007, 75(9): 094104.

    [27] [27] Wu X, Ge R, Chen P A, et al. Thinnest nonvolatile memory based on monolayer h-BN[J]. Adv. Materials, 2019, 31(15): 1806790.

    [28] [28] Zhuang P, Lin W, Ahn J, et al. Nonpolar resistive switching of multilayer-hBN-based memories[J]. Adv. Electronic Materials, 2020, 6(1): 1900979.

    [29] [29] Chua L. Resistance switching memories are memristors[J]. Appl. Phys. A, 2011, 102: 765-783.

    [30] [30] Choi J, Le Q V, Hong K, et al. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius[J]. ACS Appl. Materials & Interfaces, 2017, 9(36): 30764-30771.

    [31] [31] Xiao Z, Huang J. Energy-efficient hybrid perovskite memristors and synaptic devices[J]. Advanced Electronic Materials, 2016, 2(7): 1600100.

    [32] [32] Radoi A, Dragoman M, Dragoman D. Memristor device based on carbon nanotubes decorated with gold nanoislands[J]. Appl. Phys. Lett., 2011, 99(9): 765.

    [33] [33] Chai Y, Wu Y, Takei K, et al. Resistive switching of carbon-based RRAM with CNT electrodes for ultra-dense memory[C]// 2010 Inter. Electron Devices Meeting. IEEE, 2010: 9.3.1-9.3.4.

    [34] [34] Yan H, Choe H S, Nam S W, et al. Programmable nanowire circuits for nanoprocessors[J]. Nature, 2011, 470(7333): 240-244.

    [35] [35] Cagli C, Nardi F, Harteneck B, et al. Resistive-switching crossbar memory based on ni-nio core-shell nanowires[J]. Small, 2011, 7(20): 2899-2905.

    [36] [36] Chen P A, Hsu W C, Chiang M H. Bilayer modulation with dual vacancy filaments by intentionally oxidized titanium oxide for multilayer-hBN RRAM[J]. IEEE Trans. on Nanotechnol., 2021, 20: 687-694.

    [37] [37] Zhu K, Liang X, Yuan B, et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states[J]. ACS Appl. Materials & Interfaces, 2019, 11(41): 37999-38005.

    [38] [38] Wang Y, Huang Z, Chen X, et al. Building resistive switching memory having super-steep switching slope with in-plane boron nitride[J]. Nanotechnology, 2021, 33(12): 125202.

    [39] [39] Dastgeer G, Abbas H, Kim D Y, et al. Synaptic characteristics of an ultrathin hexagonal boron nitride (h-BN) diffusive memristor[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(1): 2000473.

    [40] [40] Wang Z Q, Xu H Y, Li X H, et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J]. Adv. Functional Materials, 2012, 22(13): 2759-2765.

    [41] [41] Wang Z, Joshi S, Savelev S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 2017, 16(1): 101-108.

    [42] [42] Sokolov A S, Ali M, Riaz R, et al. Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications[J]. Adv. Functional Materials, 2019, 29(18): 1807504.

    [43] [43] Yi W, Tsang K K, Lam S K, et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons[J]. Nature Communications, 2018, 9(1): 4661.

    [44] [44] Dastgeer G, Abbas H, Kim D Y, et al. Synaptic characteristics of an ultrathin hexagonal boron nitride (h-BN) diffusive memristor[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(1): 2000473.

    [45] [45] Meng J L, Wang T Y, He Z Y, et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications[J]. Materials Horizons, 2021, 8(2): 538-546.

    [46] [46] Chen S, Mahmoodi M R, Shi Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks[J]. Nature Electronics, 2020, 3(10): 638-645.

    [47] [47] Burr G W, Shenoy R S, Virwani K, et al. Access devices for 3D crosspoint memory[J]. J. of Vacuum Science & Technology B, 2014, 32(4): 040802.

    [48] [48] Liang J, Wong H S P. Cross-point memory array without cell selectors——Device characteristics and data storage pattern dependencies[J]. IEEE Trans. on Electron Devices, 2010, 57(10): 2531-2538.

    [49] [49] Chen A. A comprehensive crossbar array model with solutions for line resistance and nonlinear device characteristics[J]. IEEE Trans. on Electron Devices, 2013, 60(4): 1318-1326.

    [50] [50] Wang C H, McClellan C, Shi Y, et al. 3D monolithic stacked 1T1R cells using monolayer MoS 2 FET and hBN RRAM fabricated at low (150℃) temperature[C]// 2018 IEEE Inter. Electron Devices Meeting (IEDM)., 2018: 22.5.1-22.5.4.

    [51] [51] Zhang D, Yeh C H, Cao W, et al. 0.5T0.5R——An ultracompact RRAM cell uniquely enabled by van der Waals heterostructures[J]. IEEE Trans. on Electron Devices, 2021, 68(4): 2033-2040.

    Tools

    Get Citation

    Copy Citation Text

    WANG Sibo, LIU Xiaohang, CHEN Zhanguo. Research Progress of Hexagonal Boron Nitride Memristor[J]. Semiconductor Optoelectronics, 2024, 45(1): 11

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 9, 2023

    Accepted: --

    Published Online: Jun. 25, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2023100902

    Topics