Journal of Innovative Optical Health Sciences, Volume. 11, Issue 1, 1750018(2018)

Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells

Zahra Ghanian1, Girija Ganesh Konduri2, Said Halim Audi3, Amadou K. S. Camara4, and Mahsa Ranji1、*
Author Affiliations
  • 1Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
  • 2Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • 3Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
  • 4Department of Anesthesiology and Anesthesia Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • show less
    References(80)

    [1] [1] A. P. West, G. S. Shadel, S. Ghosh, “Mitochondria in innate immune responses," Nat. Rev. Immunol. 11, 489-402 (2011).

    [2] [2] J. St-Pierre, J. A. Buckingham, S. J. Roebuck, M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain," J. Biolo. Chem. 277, 44784-44790 (2002).

    [3] [3] B. Chance, H. Sies, A. Boveris, “Hydroperoxide metabolism in mammalian organs," Physiol. Rev. 59, 527-605 (1979).

    [4] [4] D. F. Stowe, A. K. S. Camara, “Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function," Antioxid. Redox Signal. 11, 1373-1414 (2009).

    [5] [5] A. Boveris, B. Chance, “The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen," Biochem. J. 134, 707-716 (1973).

    [6] [6] A. K. S. Camara, E. J. Lesnefsky, D. F. Stowe, “Potential Therapeutic Benefits of Strategies Directed to Mitochondria," Antioxid. Redox Signal. 13, 279-347 (2010).

    [7] [7] A. K. S. Camara, M. Bienengraeber, D. F. Stowe, “Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury," Front. Physiol. 2(13), 1-34 (2011).

    [8] [8] R. M. Touyz, “Reactive oxygen species and angiotensin II signaling in vascular cells implications in cardiovascular disease," Braz. J. Med. Biol. Res. 37, 1263-1273 (2004).

    [9] [9] F. Q. Schafer, G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple," Free Radi. Biol. Med. 30, 1191-1212 (2001).

    [10] [10] K. Nagata, Y. Iwasaki, T. Yamada, T. Yuba, K. Kono, S. Hosogi et al., “Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury," Respir. Med. 101, 800-807 (2007).

    [11] [11] E. Gitto, R. J. Reiter, M. Karbownik, X. T. Dun, I. Barberi, “Respiratory distress syndrome in the newborn: Role of oxidative stress," Intensive Care Med. 27, 1116-1123 (2001).

    [12] [12] M. E. Wearden, U. T. Brunk, A. Terman, J. W. Eaton, “Mitochondria: Potential importance in hyperoxic lung injury," Pediatr. Res. 47, 380a-380a (2000).

    [13] [13] O. D. Saugstad, “Bronchopulmonary dysplasiaoxidative stress and antioxidants," Semin. Neonatol. 8, 39-49 (2003).

    [14] [14] N. G. Bazan, V. Colangelo, W. J. Lukiw, “Prostaglandins and other lipid mediators in Alzheimer's disease," Prostaglandins Other Lipid Mediat. 68 69, 197-210 (2002).

    [15] [15] H. L. Hsieh, C. M. Yang, “Role of redox signaling in neuroinflammation and neurodegenerative diseases," Biomed. Res. Int. 2013, Article ID 484613, 18 pages (2013).

    [16] [16] J. F. Turrens, “Mitochondrial formation of reactive oxygen species," J. Physiol.-London 552, 335-344 (2003).

    [17] [17] V. Sampath, A. C. Radish, A. L. Eis, K. Broniowska, N. Hogg, G. G. Konduri, “Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia," Free Radic. Biol. Med. 46, 663-671 (2009).

    [18] [18] K. N. Farrow, S. Wedgwood, K. J. Lee, L. Czech, S. F. Gugino, S. Lakshminrusimha et al., “Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn," Respir. Physiol. Neurobiol. 174, 272-281 (2010).

    [19] [19] S. Lakshminrusimha, J. A. Russell, R. H. Steinhorn, D. D. Swartz, R. M. Ryan, S. F. Gugino et al., “Pulmonary Hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen," Pediatr. Res. 62, 313-318 (2007).

    [20] [20] P. Mukhopadhyay, M. Rajesh, G. Hasko, B. J. Hawkins, M. Madesh, P. Pacher, “Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy," Nat. Protoc. 2, 2295-2301 (2007).

    [21] [21] K. M. Robinson, M. S. Janes, M. Pehar, J. S. Monette, M. F. Ross, T. M. Hagen et al., “Selective fluorescent imaging of superoxide in vivo using ethidium-based probes," Proc. Nat. Acad. Sci. USA 103, 15038-15043 (2006).

    [22] [22] H. R. Rezvani, N. Ali, A. Taieb, H. de Verneuil, F. Mazurier, “Hypoxia-inducible factor-1alpha, a key factor in skin physiology and pathophysiology," J. Invest. Dermatol. 132, S31-S31 (2012).

    [23] [23] M. Pehar, M. R. Vargas, K. M. Robinson, P. Cassina, P. J. Diaz-Amarilla, T. M. Hagen et al., “Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis," J. Neurosci. 27, 7777-7785 (2007).

    [24] [24] P. Mukhopadhyay, M. Rajesh, K. Yoshihiro, G. Hasko, P. Pacher, “Simple quantitative detection of mitochondrial superoxide production in live cells," Biochem. Biophys. Res. Commun. 358, 203-208 (2007).

    [25] [25] B. J. Hawkins, M. Madesh, C. J. Kirkpatrick, A. B. Fisher, “Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling," Mol. Biol. Cell. 18, 2002-2012 (2007).

    [26] [26] A. De Pauw, S. Demine, S. Tejerina, M. Dieu, E. Delaive, A. Kel et al., “Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: Role for triglyceride content reduction," Am. J. Physiol.-Endocrinol. Metabol. 302, E1123-E1141 (2012).

    [27] [27] A. Y. Abramov, A. Scorziello, M. R. Duchen, “Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation," J. Neurosci. 27, 1129-1138 (2007).

    [28] [28] M. C. Zimmennan, L. W. Oberley, S. W. Flanagan, “Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels," J. Neurochem. 102, 609-618 (2007).

    [29] [29] J. Fauconnier, D. C. Andersson, S. J. Zhang, J. T. Lanner, R. Wibom, A. Katz et al., “Effects of palmitate on Ca2t handling in adult control and ob/ob cardiomyocytes," Diabetes 56, 1136-1142 (2007).

    [30] [30] A. Iuso, S. Scacco, C. Piccoli, F. Bellomo, V. Petruzzella, R. Trentadue et al., “Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I," J. Biol. Chem. 281, 10374-10380 (2006).

    [31] [31] M. Rajesh, P. Mukhopadhyay, S. Batkai, G. Hasko, L. Liaudet, V. R. Drel et al., “Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption," Am. J. Physiol.-Heart Circul. Physiol. 293, H610-H619 (2007).

    [32] [32] G. G. Konduri, J. S. Ou, Y. Shi, K. A. Pritchard, “Decreased association of HSP90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension," Am. J. Physiol.-Heart Circul. Physiol. 285, H204-H211 (2003).

    [33] [33] S. Lakshminrusimha, J. A. Russell, R. H. Steinhorn, R. M. Ryan, S. F. Gugino, F. C. Morin, 3rd et al., “Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation," Pediatr. Res. 59, 137-141 (2006).

    [34] [34] R. A. J. Smith, R. C. Hartley, M. P. Murphy, “Mitochondria-Targeted SmallMoleculeTherapeutics and Probes," Antioxid. Redox Signal 15, 3021-3038 (2011).

    [35] [35] K. M. Robinson, M. S. Janes, J. S. Beckman, “The selective detection of mitochondrial superoxide by live cell imaging," Nat. Protoc. 3, 941-947 (2008).

    [36] [36] Y. B. Liu, D. R. Schubert, “The specificity of neuroprotection by antioxidants" J. Biomed. Sci. 16, 98-109 (2009).

    [37] [37] S. Bolte, F. P. Cordelieres, “A guided tour into subcellular colocalization analysis in light microscopy," J. Microsc.-Oxford, 224, 213-232 (2006).

    [38] [38] W. Strober, “Trypan Blue Exclusion Test of Cell Viability," Curr. Protoc. Immunol. 111, A3 B 1-3 (2015).

    [39] [39] Z. Ghanian, K. Staniszewski, N. Jamali, R. Sepehr, S. Wang, C. M. Sorenson et al., “Quantitative assessment of retinopathy using multi-parameter image analysis," J. Med. Signals Sens. 6, 71-80 (2016).

    [40] [40] H. R. Rezvani, S. Dedieu, S. North, F. Belloc, R. Rossignol, T. Letellier et al., “Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure," J. Biol. Chem. 282, 16413-16422 (2007).

    [41] [41] L. I. Johnson-Cadwell, M. B. Jekabsons, A. Wang, B. M. Polster, D. G. Nicholls, “`Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress," J. Neurochem. 101, 1619-1631 (2007).

    [42] [42] B. A. Roelofs, S. X. Ge, P. E. Studlack, B. M. Polster, “Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV," Free Radic. Biol. Med. 86, 250-258 (2015).

    [43] [43] B. Kalyanaraman, B. P. Dranka, M. Hardy, R. Michalski, J. Zielonka, “HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes The ultimate approach for intra- and extracellular superoxide detection," Biochim. Et Biophys. Acta-Gen. Subj. 1840, 739-744 (2014).

    [44] [44] J. Zielonka, J. Vasquez-Vivar, B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine," Nat. Protoc. 3, 8-21 (2008).

    [45] [45] H. J. Heusinkveld, R. H. S. Westerink, “Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels," Toxicol. Appl. Pharmacol. 255, 1-8 (2011).

    [46] [46] P. J. Bushway, M. Mercola, J. H. Price, “A comparative analysis of standard microtiter plate reading versus imaging in cellular assays," Assay Drug Dev. Technol. 6, 557-567 (2008).

    [47] [47] S. Menazza E. Murphy, “The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System," Circul. Res. 118, 994-1007 (2016).

    [48] [48] X. Y. Li, P. Fang, J. T. Mai, E. T. Choi, H. Wang, X. F. Yang, “Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers," J. Hematol. Oncol. 6, 6-19 (2013).

    [49] [49] M. A. Aon, S. Cortassa, B. O'Rourke, “Redoxoptimized ROS balance: A unifying hypothesis," Biochim. Et Biophys. Acta-Bioenerg. 1797, 865-877 (2010).

    [50] [50] C. Brueckl, S. Kaestle, A. Kerem, H. Habazettl, F. Krombach, H. Kuppe et al., “Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ," Am. J. Respir. Cell Mol. Biol. 34(4), 453-463 (2006).

    [51] [51] J. F. Turrens, “Mitochondrial formation of reactive oxygen species," J. Physiol. 552, 335-344 (2003).

    [52] [52] R. H. Kallet, M. A. Matthay, “Hyperoxic acute lung injury," Respir. Care 58, 123-141 (2013).

    [53] [53] E. Cadenas, A. Boveris, C. I. Ragan, A. O. Stoppani, “Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beefheart mitochondria," Arch. Biochem. Biophys. 180, 248-257 (1977).

    [54] [54] J. F. Turrens, A. Alexandre, A. L. Lehninger, “Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria," Arch. Biochem. Biophys. 237, 408-414 (1985).

    [55] [55] Y. Liu, G. Fiskum, D. Schubert, “Generation of reactive oxygen species by the mitochondrial electron transport chain," J. Neurochem. 80, 780-787 (2002).

    [56] [56] L. Zhang, L. D. Yu, C. A. Yu, “Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria," J. Biol. Chem. 273, 33972-33976 (1998).

    [57] [57] P. R. Rich, W. D. Bonner, “The sites of superoxide anion generation in higher plant mitochondria," Arch. Biochem. Biophys. 188, 206-213 (1978).

    [58] [58] I. V. Grigolava, M. Ksenzenko, A. A. Konstantinob, A. N. Tikhonov, T. M. Kerimov, “[Tiron as a spintrap for superoxide radicals produced by the respiratory chain of submitochondrial particles]," Biokhimiia 45, 75-82 (1980).

    [59] [59] F. Diaz, H. Fukui, S. Garcia C. T. Moraes, “Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts," Mol. Cell. Biol. 26, 4872-4881 (2006).

    [60] [60] H. B. Leavesley, L. Li, K. Prabhakaran, J. L. Borowitz, G. E. Isom, “Interaction of cyanide and nitric oxide with cytochrome c oxidase: Implications for acute cyanide toxicity," Toxicol. Sci. 101, 101-111 (2008).

    [61] [61] I. Sipos, L. Tretter, V. Adam-Vizi, “Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals," J. Neurochem. 84, 112-118 (2003).

    [62] [62] A. K. S. Camara, M. L. Riess, L. G. Kevin, E. Novalija, D. F. Stowe, “Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart," Am. J. Physiol.-Heart Circul. Physiol. 286, H1289-H1299 (2004).

    [63] [63] I. Amigo, F. M. da Cunha, M. F. Forni, W. Garcia- Neto, P. A. Kakimoto, L. A. Luevano-Martinez et al., “Mitochondrial form, function and signalling in aging," Biochem. J. 473, 3421-3449 (2016).

    [64] [64] P. G. Gunasekar, J. L. Borowitz, G. E. Isom, “Cyanide-induced generation of oxidative species: Involvement of nitric oxide synthase and cyclooxygenase-2," J. Pharmacol. Exp. Therap. 285, 236-241 (998).

    [65] [65] D. C. Jones, P. G. Gunasekar, J. L. Borowitz, G. E. Isom, “Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells," J. Neurochem. 74, 2296-2304 (2000).

    [66] [66] Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, E. J. Lesnefsky, “Production of reactive oxygen species by mitochondria Central role of complex III," J. Biolog. Chem. 278, 36027-36031 (2003).

    [67] [67] Y. J. Wang, Y. S. Ho, S. W. Chu, H. J. Lien, T. H. Liu, J. K. Lin, “Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol (vol 105, pg 1, 1997)," Chem.-Biolog. Interac. 106, 1-16 (1997).

    [68] [68] W. C. Dorsey, P. B. Tchounwou, B. D. Ford, “Neuregulin 1-Beta cytoprotective role in AML 12 mouse hepatocytes exposed to pentachlorophenol," Int. J. Environ. Res. Publ. Health 3, 11-22 (2006).

    [69] [69] P. Fernandez Freire, V. Labrador, J. M. P. Martin, M. J. Hazen, “Cytotoxic effects in mammalian Vero cells exposed to pentachlorophenol," Toxicology 210, 37-44 (2005).

    [70] [70] J. Folch, M. Yeste-Velasco, D. Alvira, A. V. de la Torre, M. Bordas, M. Lopez et al., “Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons," Neurotoxicology 30, 451-458 (2009).

    [71] [71] R. Sepehr, S. H. Audi, K. S. Staniszewski, S. T. Haworth, E. R. Jacobs, M. Ranji, “Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs after Exposure to Hyperoxia," IEEE J. Transl. Eng. Health. Med. 1, (2013).

    [72] [72] Y. L. Dong, P. J. Zhou, S. Y. Jiang, X. W. Pan, X. H. Zhao, “Induction of oxidative stress and apoptosis by pentachlorophenol in primary cultures of Carassius carassius hepatocytes," Comparative Biochem. Physiol. C-Toxicol. Pharmacol. 150, 179-185 (2009).

    [73] [73] J. N. He, Y. Duan, D. P. Hua, G. J. Fan, L. Wang, Y. Liu et al., “DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling," Plant Cell 24, 1815-1833 (2012).

    [74] [74] R. F. Feissner, J. Skalska, W. E. Gaum, S. S. Sheu, “Crosstalk signaling between mitochondrial Ca2t and ROS," Front. Biosci.-Landmark 14, 1197-1218 (2009).

    [75] [75] E. Cadenas, A. Boveris, “Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria," Biochem. J. 188, 31-37 (1980).

    [76] [76] B. D. Fink, Y. O'Malley, B. L. Dake, N. C. Ross, T. E. Prisinzano, W. I. Sivitz, “Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells," PLoS One 4, e4250 (2009).

    [77] [77] M. F. Ross, G. F. Kelso, F. H. Blaikie, A. M. James, H. M. Cocheme, A. Filipovska et al., “Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology," Biochem.-Moscow 70, 222-230 (2005).

    [78] [78] M. Kalbacova, M. Vrbacky, Z. Drahota, Z. Melkova, “Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofl uorometry," Cytometry A 52, 110-116 (2003).

    [79] [79] A. R. Khaled, D. A. Reynolds, H. A. Young, C. B. Thompson, K. Muegge, S. K. Durum, “Interleukin-3 withdrawal induces an early increase in mitochondrial membrane potential unrelated to the Bcl-2 fammily Roles of intracellular pH, ADP transport, and F0F1-ATPase," J. Biolog. Chem. 276, 6453-6462 (2001).

    [80] [80] F. M. P. de Gannes, M. A. Belaud-Rotureau, P. Voisin, N. Leducq, F. Belloc, P. Canioni et al., “Flow cytometric analysis of mitochondrial activity in situ: Application to acetylceramide-induced mitochondrial swelling and apoptosis," Cytometry 33, 333-339 (1998).

    Tools

    Get Citation

    Copy Citation Text

    Zahra Ghanian, Girija Ganesh Konduri, Said Halim Audi, Amadou K. S. Camara, Mahsa Ranji. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1750018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 9, 2017

    Accepted: May. 1, 2017

    Published Online: Sep. 17, 2018

    The Author Email: Ranji Mahsa (ranji@uwm.edu)

    DOI:10.1142/s1793545817500183

    Topics