Optics and Precision Engineering, Volume. 31, Issue 15, 2236(2023)

Trajectory tracking control for tri-axial fast tool servo using hybrid electromagnetic-piezoelectric actuation

Zhiyuan ZHU1... Zihui ZHU1, Xiaoqin ZHOU2, Limin ZHU3 and Zhiwei ZHU1,* |Show fewer author(s)
Author Affiliations
  • 1School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing20094, China
  • 2School of Mechanical and Aerospace Engineering, Jilin University, Changchun13005, China
  • 3School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai200240, China
  • show less
    References(20)

    [1] [1] 1吴庆玲. 光学自由曲面快速刀具伺服车削误差的补偿[J]. 光学 精密工程, 2015, 23(9): 2620-2626. doi: 10.3788/OPE.20152309.2620WUQ L. Error compensation of optical freeform surfaces in fast tool servo diamond turning[J]. Opt. Precision Eng., 2015, 23(9):2620-2626.(in Chinese). doi: 10.3788/OPE.20152309.2620

    [2] Y L CHEN, Z W LI, F W CHEN et al. Development of an optimized three-axis fast tool servo for ultraprecision cutting. IEEE/ASME Transactions on Mechatronics, 27, 3244-3254(2022).

    [3] L CHEN, Y H NIU, X YANG et al. A novel compliant nanopositioning stage driven by a normal-stressed electromagnetic actuator. IEEE Transactions on Automation Science and Engineering, 19, 3039-3048(2022).

    [4] [4] 4闫鹏, 李金银. 压电陶瓷驱动的长行程快刀伺服机构设计[J]. 光学 精密工程, 2020, 28(2):390-397.YANP, LIJ Y. Design of piezo-actuated long-stroke fast tool servo mechanism[J]. Opt. Precision Eng., 2020, 28(2):390-397.(in Chinese)

    [5] Y TAO, Z LI, P HU et al. High-accurate cutting forces estimation by machine learning with voice coil motor-driven fast tool servo for micro/nano cutting. Precision Engineering, 79, 291-299(2023).

    [6] W W HUANG, L LI, Z ZHU et al. Modeling, design and control of normal-stressed electromagnetic actuated fast tool servos. Mechanical Systems and Signal Processing, 178, 109304(2022).

    [7] X D LU, D L TRUMPER. Ultrafast tool servos for diamond turning. CIRP Annals, 54, 383-388(2005).

    [8] D WU, K CHEN. Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method. IEEE Transactions on Industrial Electronics, 60, 3906-3914(2013).

    [9] [9] 9房丰洲, 陈晓菲, 张效栋, 等. 基于自抗扰控制算法的麦克斯韦快刀伺服控制系统[J]. 纳米技术与精密工程, 2017, 15(5):335-341. doi: 10.13494/j.npe.20160094FANGF ZH, CHENX F, ZHANGX D, et al. Development of fast tool servo control system based on maxwell normal force using ADRC algorithm[J]. Nanotechnology and Precision Engineering, 2017, 15(5):335-341.(in Chinese). doi: 10.13494/j.npe.20160094

    [10] [10] 10夏薇, 朱紫辉, 陈栎, 等. Maxwell电磁力驱动快速刀具伺服系统轨迹跟踪控制[J]. 机械工程学报, 2022, 58(3): 259-265. doi: 10.3901/jme.2022.03.259XIAW, ZHUZ H, CHENL, et al. Trajectory tracking control of a fast tool servo system driven by maxwell electromagnetic force[J]. Journal of Mechanical Engineering, 2022, 58(3): 259-265.(in Chinese). doi: 10.3901/jme.2022.03.259

    [11] X ZHANG, L LAI, L ZHANG et al. Hysteresis and magnetic flux leakage of long stroke micro/nanopositioning electromagnetic actuator based on Maxwell normal stress. Precision Engineering, 75, 1-11(2022).

    [12] Z W ZHU, W L ZHU et al. Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting. IEEE Transactions on Industrial Electronics, 65, 6362-6371(2018).

    [13] H LI, H TANG, J LI et al. Design, fabrication, and testing of a 3-DOF piezo fast tool servo for microstructure machining. Precision Engineering, 72, 756-768(2021).

    [14] Z H ZHU, L CHEN, Y H NIU et al. Triaxial fast tool servo using hybrid electromagnetic–piezoelectric actuation for diamond turning. IEEE Transactions on Industrial Electronics, 69, 1728-1738(2022).

    [15] T YAMAGUCHI, M HIRATA, C K PANG. High-Speed Precision Motion Control(2011).

    [16] [16] 16门延武, 张辉, 姜文雪, 等. CMP多区压力定量解耦协同控制[J]. 清华大学学报(自然科学版), 2015, 55(7): 750-755.MENY W, ZHANGH, JIANGW X, et al. Quantitative decoupling cooperative control of CMP multi-zone pressure[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(7): 750-755.(in Chinese)

    [17] G Y GU, L M ZHU, C Y SU et al. Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Transactions on Automation Science and Engineering, 13, 313-332(2016).

    [18] [18] 18杨斌堂, 赵寅, 彭志科, 等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学 精密工程, 2013, 21(1):124-130. doi: 10.3788/ope.20132101.0124YANGB T, ZHAOY, PENGZH K, et al. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA[J]. Opt. Precision Eng., 2013, 21(1):124-130.(in Chinese). doi: 10.3788/ope.20132101.0124

    [19] M RAKOTONDRABE. Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, 27, 1646-1651(2012).

    [20] M RAKOTONDRABE. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science and Engineering, 8, 428-431(2011).

    Tools

    Get Citation

    Copy Citation Text

    Zhiyuan ZHU, Zihui ZHU, Xiaoqin ZHOU, Limin ZHU, Zhiwei ZHU. Trajectory tracking control for tri-axial fast tool servo using hybrid electromagnetic-piezoelectric actuation[J]. Optics and Precision Engineering, 2023, 31(15): 2236

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Micro/Nano Technology and Fine Mechanics

    Received: Mar. 27, 2023

    Accepted: --

    Published Online: Sep. 5, 2023

    The Author Email: ZHU Zhiwei (zw.zhu@njust.edu.cn)

    DOI:10.37188/OPE.20233115.2236

    Topics