Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 158(2022)

Recent Progress on Na3V2(PO4)2F3 Cathodes for Na-Ion Batteries

ZHU Chao1... TU Jian2 and DING Yuanli1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(72)

    [3] [3] JIN T, LI H, ZHU K, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chem Soc Rev, 2020, 49: 2342–2377.

    [4] [4] XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Adv Mater, 2015, 27(36):1501527.

    [5] [5] LE MEINS J M, CROSNIER-LOPEZ M P, HEMON-RIBAUD A, et al. Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+,Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies[J]. J Solid State Chem, 1999, 148(2): 260–277.

    [6] [6] BIANCHINI M, BRISSET N, FAUTH F, et al. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study[J]. Chem Mater, 2014, 26:4238–4247.

    [7] [7] BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chem Mater, 2015,27(8): 3009–3020.

    [8] [8] DENG L, SUN G, GOH K, et al. Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries[J]. Electrochim Acta, 2019, 298: 459–467.

    [9] [9] LI Y, LIANG X, CHEN G, et al. In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage[J]. Chem Eng J, 2020, 387: 123952.

    [10] [10] ZHAO J, GAO Y, LIU Q, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications[J]. Chem Eur J, 2018,24(12): 2913–2919.

    [11] [11] LI L, XU Y, SUN X, et al. High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles[J]. Chem Eng J, 2018, 331: 712–719.

    [12] [12] ZHANG L L, MA D, LI T, et al. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance na-ion batteries[J]. ACS Appl Mater Interfaces,2018, 10(43): 36851–36859.

    [13] [13] WANG T, ZHANG W, LI H, et al. N-doped carbon nanotubes decorated Na3V2(PO4)2F3 as a durable ultrahigh-rate cathode for sodium ion batteries[J]. ACS Appl Energy Mater, 2020, 3(4):3845–3853.

    [14] [14] YI G D, FAN C L, HU Z, et al. Construction of high performance N-doped Na3V2(PO4)2F3/C cathode assisting by plasma enhanced chemical vapor deposition for sodium-ion batteries[J]. Electrochim Acta, 2021, 383: 138370.

    [15] [15] LENG J, WANG Z, WANG J, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion[J]. Chem Soc Rev, 2019, 48(11): 3015–3072.

    [16] [16] ESHRAGHI N, CAES S, MAHMOUD A, et al. Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: Good electrochemical performance thanks to well-dispersed CNT network within NVPF particles[J]. Electrochim Acta, 2017, 228: 319–324.

    [17] [17] PI Y, GAN Z, YAN M, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C@hard carbon full cells for promoting the development of sodium-ion battery[J]. Chem Eng J, 2021, 413:127565.

    [18] [18] SHEN C, LONG H, WANG G, et al. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries[J]. J Mater Chem A, 2018,6(14): 6007–6014.

    [19] [19] CAI Y, CAO X, LUO Z, et al. Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling[J]. Adv Sci, 2018, 5(9): 1800680.

    [20] [20] XU S, LI H, WANG X. Three-dimensional graphene network decorated with highly symmetrical cuboid Na3V2(PO4)2F3 particles: High rate capability and cycling stability for sodium-ion batteries[J]. ChemElectroChem, 2021, 8(5): 866–872.

    [21] [21] MAO Y, ZHANG X, ZHOU Y, et al. Microwave-assisted synthesis of porous nano-sized Na3V2(PO4)2F3@C nanospheres for sodium ion batteries with enhanced stability[J]. Scripta Mater, 2020, 181: 92–96.

    [22] [22] QI Y, ZHAO J, YANG C, et al. Comprehensive studies on the hydrothermal strategy for the synthesis of Na3(VO1?xPO4)2F1+2x (0 ≤x ≤ 1) and their Na-storage performance[J]. Small Meth, 2018, 3(4):1800111.

    [23] [23] LI X, CHEN W, QIAN Q, et al. Electrospinning-based strategies for battery materials[J]. Adv Energy Mater, 2020, 11(2): 2000845.

    [24] [24] LI Y, LIANG X, ZHONG G, et al. Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries[J]. ACS Appl Mater Interfaces,2020, 12(23): 25920–25929.

    [25] [25] QIU R, FEI R, GUO J-Z, et al. Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge[J]. J Power Sources, 2020, 466: 228249.

    [26] [26] PARK S, SONG J, KIM S, et al. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries[J]. Nano Res, 2019,12(4): 911–917.

    [27] [27] LI F, ZHAO Y, XIA L, et al. Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries[J]. J Mater Chem A, 2020, 8(25): 12391–12397.

    [28] [28] JIN T, HAN Q, WANG Y, et al. 1D Nanomaterials: design, synthesis,and applications in sodium–ion batteries[J]. Small, 2018, 14(2):1703086.

    [29] [29] MUKHERJEE A, SHARABANI T, SHARMA R, et al. Effect of crystal structure and morphology on Na3V2(PO4)2F3 performances for Na-ion batteries[J]. Batter Supercaps, 2020, 3(6): 510–518.

    [30] [30] YI H, LIN L, LING M, et al. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal–ball-milling method[J]. ACS Energy Lett, 2019, 4(7): 1565–1571.

    [31] [31] NADEINA A, ROZIER P, SEZNEC V. Facile synthesis of a common Na-ion battery cathode material Na3V2(PO4)2F3 by spark plasma sintering[J]. Energy Technol, 2020, 8(5): 1901304.

    [32] [32] BROUX T, FAUTH F, HALL N, et al. High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries[J]. Small Methods,2018, 3(4): 1800215.

    [33] [33] HU L, CHENG S, XIAO S, et al. Dually decorated Na3V2(PO4)2F3 by carbon and 3D graphene as cathode material for sodium-ion batteries with high energy and power densities[J]. ChemElectroChem, 2020, 7:3975–3983.

    [34] [34] ZHU C, WU C, CHEN C C, et al. A high power–high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters,rational design and realization[J]. Chem Mater, 2017, 29(12):5207–5215.

    [35] [35] ZHU L, ZHANG Q, SUN D, et al. Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries[J]. Mater Chem Front, 2020, 4(10): 2932–2942.

    [36] [36] CRIADO A, LAVELA P, ORTIZ G, et al. Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries[J]. Electrochim Acta, 2020, 332: 135502.

    [37] [37] LIU S, CAO X, ZHANG Y, et al. Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries[J]. J Mater Chem A, 2020, 8(36): 18872–18879.

    [38] [38] GU Z Y, GUO J Z, SUN Z H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries[J]. Sci Bull, 2020, 65(9): 702–710.

    [39] [39] YANG Z, LI G, SUN J, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Mater, 2020, 25: 724–730.

    [40] [40] ZHANG Y, TAO L, XIE C, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Adv Mater, 2020, 32(7):1905923.

    [41] [41] GU Z Y, GUO J Z, ZHAO X X, et al. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries[J]. Info Mat, 2021, 3(6): 694–704.

    [42] [42] IARCHUK A R, SHEPTYAKOV D V, ABAKUMOV A M.Hydrothermal microwave-assisted synthesis of Na3+xV2–yMny(PO4)2F3 solid solutions as potential positive electrodes for na-ion batteries[J].ACS Appl Energy Mater, 2021, 4(5): 5007–5014.

    [43] [43] LI L, LIU X, TANG L, et al. Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping[J]. J Alloys Compd, 2019, 790: 203–211.

    [44] [44] ZHANG J, LAI Y, LI P, et al. Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries[J]. Green Energy Environ, 2021, DOI:10.1016/j.gee.2021.01.001.

    [45] [45] KOSOVA N V, REZEPOVA D O Mixed sodium-lithium vanadium fluorophosphates Na3?xLixV2(PO4)2F3: The origin of the excellent high-rate performance[J]. J Power Sources, 2018, 408: 120–127.

    [46] [46] LIU W, YI H, ZHENG Q, et al. Y-doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties[J]. J Mater Chem A, 2017, 5(22):10928–10935.

    [47] [47] GUO C, YANG J, CUI Z, et al. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries[J]. J Energy Chem,2022, 65: 514–523.

    [48] [48] YI H, LING M, XU W, et al. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes:Analysis of electrochemical performance and kinetic properties[J].Nano Energy, 2018, 47: 340–352.

    [49] [49] PUSPITASARI D A, PATRA J, HUNG I-M, et al. Optimizing the mg doping concentration of Na3V2–xMgx(PO4)2F3/C for enhanced sodiation/desodiation properties[J]. ACS Sustain Chem Eng, 2021,9(20): 6962–6971.

    [50] [50] GU Z Y, GUO J Z, SUN Z H, et al. Aliovalent-ion-induced lattice regulation based on charge balance theory: advanced fluorophosphate cathode for sodium-ion full batteries[J]. Small, 2021, 17(32): 2102010.

    [51] [51] ZHANG Y, GUO S, XU H. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries[J]. J Mater Chem A, 2018, 6(10): 4525–4534.

    [52] [52] PARK J Y, SHIM Y, KIM Y-I, et al. An iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications[J]. J Mater Chem A, 2020, 8(39):20436–20445.

    [53] [53] LI L, XU Y, CHANG R, et al. Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for Sodium-Ion batteries[J]. Energy Storage Mater, 2021, 37: 325–335.

    [54] [54] LIU K, LEI P, WAN X, et al. Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluorophosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries[J]. J Colloid Interface Sci, 2018, 532: 426–432.

    [55] [55] CHANG W, ZHANG X Y, QU J, et al. Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries[J]. ACS Appl Mater Interfaces, 2020, 12(37):41419–41428.

    [56] [56] MAO Z, WANG R, HE B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small, 2019, 15(36): 1902466.

    [57] [57] GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance[J]. Adv Mater, 2017, 29(33):1701968.

    [58] [58] MA C, XU T, YAN C, et al. Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries[J]. J Power Sources, 2021, 482: 228906.

    [59] [59] JIN H, LIU M, UCHAKER E, et al. Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery[J]. Cryst Eng Comm, 2017, 19(30): 4287–4293.

    [60] [60] HOU Y, CHANG K, WANG Z, et al. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries[J]. Sci China Mater, 2018, 62(4): 474–486.

    [61] [61] ZHAO L, RONG X, NIU Y, et al. Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage[J]. Small, 2020, 16(48):2004925.

    [62] [62] ZHANG Z, CHEN Z, MAI Z, et al. Toward high power-high energy sodium cathodes: A case study of bicontinuous ordered network of 3D porous Na3(VO)2(PO4)2F/rGO with pseudocapacitance effect[J]. Small,2019, 15(14): 1900356.

    [63] [63] ZHAO X X, GU Z Y, GUO J Z, et al. Dual anionic substitution engineering for an advanced NASICON phosphate cathode in sodium-ion batteries[J]. Mater Chem Front, 2021, 5(15): 5671–5678.

    [64] [64] CHOU S L, PAN Y, WANG J Z, et al. Small things make a big difference: binder effects on the performance of Li and Na batteries[J].Phys Chem Chem Phys, 2014, 16(38): 20347–20359.

    [65] [65] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical,and electrical functionalities of binders for advanced energy-storage devices[J]. Chem Rev, 2018, 118(18): 8936–8982.

    [66] [66] WANG M, HUANG X, WANG H, et al. Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries[J]. RSC Adv, 2019, 9(53):30628–30636.

    [67] [67] WANG M, WANG K, HUANG X, et al. Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries[J]. Ceram Int, 2020, 46(18): 28490–28498.

    [68] [68] ZHAO J, YANG X, YAO Y, et al. Moving to aqueous binder: A valid approach to achieving high-rate capability and long-term durability for sodium-ion battery[J]. Adv Sci, 2018, 5(4): 1700768.

    [69] [69] SUBRAMANIAN Y, OH W, CHOI W, et al. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life[J]. Chem Eng J, 2021, 403: 126291.

    [70] [70] LI L, ZHANG N, SU Y, et al. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials[J]. ACS Appl Mater Interfaces, 2021, 13(20): 23787–23793.

    [71] [71] NGUYEN L H B, BROUX T, CAMACHO P S, et al. Stability in water and electrochemical properties of the Na3V2(PO4)2F3–Na3(VO)2(PO4)2F solid solution[J]. Energy Storage Mater, 2019, 20: 324–334.

    [72] [72] HWANG J, MATSUMOTO K, HAGIWARA R. Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation[J]. Adv Energy Mater, 2020, 10(34): 2001880.

    [73] [73] MA D, ZHANG L L, LI T, et al. Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2(PO4)2F3 cathode material for sodium ion batteries[J]. Electrochim Acta, 2018,283: 1441–1449.

    [74] [74] YAN G, MARIYAPPAN S, ROUSSE G, et al. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material[J]. Nat Commun, 2019, 10: 585.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Chao, TU Jian, DING Yuanli. Recent Progress on Na3V2(PO4)2F3 Cathodes for Na-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 31, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20210759

    Topics