Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1054(2022)

Research Progress on Luminescence Materials Based on Nano-Porous Glass

ZHANG Dongchen*, WANG Suyu, SU Weiquan, LIU Yongguang, LIU Zichang, WANG Zihang, ZHANG Ning, LUO Chengxi, and YANG Lvyun
Author Affiliations
  • [in Chinese]
  • show less
    References(46)

    [1] [1] KURAOKA K, CHUJO Y, YAZAWA T. Hydrocarbon separation via porous glass membranes surface-modified using organosilane compounds[J]. J Membr Sci, 2001, 182(1): 139-149.

    [3] [3] YAZAWA T, TANAKA H, NAKAMICHI H, et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method[J]. J Membr Sci, 1991, 60(2): 307-317.

    [4] [4] NICOLL S B, RADIN S, SANTOS E M, et al. In vitro release kinetics of biologically active transforming growth factor-β1 from a novel porous glass carrier[J]. Biomaterial, 1997, 18(12): 853-859.

    [6] [6] KOKUBU T, YAMANE M. Thermal and chemical properties of TiO2-SiO2 porous glass-ceramics[J]. J Mater Sci, 1987, 22(7): 2583-2588.

    [7] [7] XAVIER MAP, VALLEJO B, MARAZUELA MAD, et al. Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red[J]. Biosens Bioelectron, 2000, 14(12): 895-905.

    [8] [8] YANG L, DAI N, LIU Z, et al. Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence[J]. J Mater Chem, 2011, 21(17): 6274-6279.

    [10] [10] ENKE D, JANOWSKI F, SCHWIEGER W. Porous glasses in the 21st century--a short review[J]. Micropor Mesopor Mat, 2003, 60(1): 19-30.

    [12] [12] CHU Y, YANG Y, LIAO L, et al. 3D Nanoporous Silica Rods for Extra-Large-Core High-Power Fiber Lasers[J]. ACS Photon, 2018, 5(10): 4014-4021.

    [14] [14] CHEN D, MIYOSHI H, AKAI T, et al. Colorless transparent fluorescence material: Sintered porous glass containing rare-earth and transition-metal ions[J]. Appl Phys Lett, 2005, 86(23): 231908.

    [15] [15] LIU W, CHEN D, MIYOSHI H, et al. Colorless transparent fluorescence material at the vuv excitation: the leached sintered glass with impregnation of Tb3+ ions[J]. Chem Lott, 2005, 34: 1176-1177.

    [16] [16] LIU W, CHEN D, MIYOSHI H, et al. Tb3+-impregnated, non-porous silica glass possessing intense green luminescence under UV and VUV excitation[J]. J Non-Cryst Solids, 2006, 352(28): 2969-2976.

    [17] [17] LIU W, CHEN D, AKAI T. Preparation and photoluminescence properties of Vycor glasses impregnated with Tb3+ and Ce3+(or Gd3+)[J]. Mater Chem Phys, 2008, 109(2): 257-261.

    [18] [18] YANG L, YAMASHITA M, AKAI T. Adjusting valence state of europium in sintered porous glass by adding of aluminum and yttrium[J]. J Non-Cryst Solids, 2011, 357(11): 2400-2402.

    [19] [19] YANG L, YAMASHITA M, AKAI T. Green and red high-silica luminous glass suitable for near-ultraviolet excitation[J]. Opt Express, 2009, 17(8): 6688-6695.

    [20] [20] LIU Z, DAI N, LUAN H, et al. Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass[J]. Opt Express, 2010, 18(20): 21138-21146.

    [21] [21] ZHOU S, JIANG N, ZHU B, et al. Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers[J]. Adv Funct Mater, 2008, 18(9): 1407-1413.

    [22] [22] ZHANG Q, CHEN G, XU Y, et al. Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability[J]. Appl Phys B, 2010, 98(2): 261-265.

    [23] [23] CHU Y, YANG Y, LIU Z, et al. Enhanced green upconversion luminescence in Yb-Tb co-doped sintered silica nanoporous glass[J]. Appl Phys A, 2015, 118(4): 1429-1435.

    [24] [24] YANG Y, CHU Y, CHEN Z, et al. Blue upconversion luminescence for Yb3+/Tm3+ co-doped borosilicate glasses[J]. J Lumin, 2018, 195: 247-251.

    [25] [25] YANG Y, CHU Y, CHEN Z, et al. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology[J]. Appl Phys A, 2018, 124(2): 205.

    [26] [26] YAN-BO Q, XIAO-FENG L, QIANG Z, et al. Synthesis and luminescence properties of YVO4:Eu nanocrystals grown in nanoporous glass[J]. Mater Lett, 2010, 64: 1306-1308.

    [27] [27] HAN S, DU Y, YUAN J, et al. Luminescence behavior of Eu3+ in silica glass containing GdVO4: Eu nanocrystals[J]. J Non-Cryst Solids, 2020, 532: 119894.

    [28] [28] HAN S, TAO Y, DU Y, et al. Luminescence behavior of GdVO4: TB nanocrystals in silica glass-ceramics[J]. Crystal, 2020, 10(5): 396.

    [29] [29] CHEN P, MAO Y, HOU S, et al. Growth of SnO2 nanocrystals co-doped with Eu3+ for highly enhanced photoluminescence in mesoporous silica glasses[J]. J Mater Chem C, 2019, 7(6): 1568-1574.

    [30] [30] CHEN P, MAO Y, HOU S, et al. Effects of In2O3 nanoparticles doping on the photoluminescent properties of Eu2+/Eu3+ ions in silica glasses[J]. Ceram Int, 2019, 45(1): 233-238.

    [31] [31] CHEN P, HOU S, YANG Y, et al. ITO nanoparticles enhanced upconversion luminescence in Er3+/Yb3+-codoped silica glasses[J]. Nanoscale, 2018, 10(7): 3299-3306.

    [32] [32] SIDOROV AI, TUNG ND, VAN WU N, et al. Optical properties of nanocomposites based on zinc and tin sulfides in nanoporous silicate glass[J]. Opt Spectrosc, 2019, 127(5): 914-918.

    [33] [33] LITVIN A P, BABAEV A A, PARFENOV P S, et al. Photoluminescence of lead sulfide quantum dots of different sizes in a nanoporous silicate glass matrix[J]. J Phys Chem C, 2017, 121(15): 8645-8652.

    [34] [34] MA Y, ZHANG N, YANG L. Long-wavelength emissive solid-state carbon dots in nanoporous glass with excellent thermal stability[J]. J Colloid Interface Sci, 2021, 599: 686-693.

    [35] [35] ZERVAS M N, CODEMARD C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 219-241.

    [36] [36] CHU Y, MA Y, YANG Y, et al. Yb3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology[J]. Opt Lett, 2016, 41(6): 1225-1228.

    [37] [37] CHU Y, YANG Y, HU X, et al. Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology[J]. Opt Express, 2017, 25(20): 24061-24067.

    [38] [38] WANG S, LIU Y, ZHANG D, et al. Tailoring of communication band luminescence for super broadband optical amplifier based on Er3+/Yb3+/P5+ co-doped nanoporous silica glass[J]. Ceram Int, 2021, 47(13): 18913-18919.

    [39] [39] CHU Y, YANG Y, LIU Y, et al. 1.8 μm fluorescence characteristics of Tm3+ doped silica glasses and fiber prepared by the glass phase-separation technology[J]. J Non-Cryst Solids, 2020, 529:119704.

    [41] [41] LI M, BAI G, GUO Y, et al. Investigation on Tm3+-doped silicate glass for 1.8 μm emission[J]. J Lumin, 2012, 132(7): 1830-1835.

    [43] [43] BROCKLESBY W S, MATHIEU A, BROWN R S, et al. Defect production in silica fibers doped with Tm3+[J]. Opt Lett, 1993, 18(24): 2105-2107.

    [44] [44] MURATA K, FUJIMOTO Y, KANABE T, et al. Bi-doped SiO2 as a new laser material for an intense laser[J]. Fusion Eng Des, 1999, 44(1): 437-439.

    [45] [45] THIPPARAPU N K, WANG Y, WANG S, et al. Bi-doped fiber amplifiers and lasers[J]. Opt Mater Express, 2019, 9(6): 2446-2465.

    [46] [46] DIANOV EM, SHUBIN AV, MELKUMOV MA, et al. High-power cw

    [47] [47] THIPPARAPU N K, JAIN S, UMNIKOV A A, et al. 1 120 nm diode-pumped Bi-doped fiber amplifier[J]. Opt Lett, 2015, 40(10): 2441-2444.

    [48] [48] BUFETOV I, MELKUMOV M, KHOPIN V, et al. Efficient Bi-doped fiber lasers and amplifiers for the spectral region 1 300-1 500 nm[C]// SPIE LASE, California, United States, 2010:7580.

    [49] [49] THIPPARAPU N K, WANG Y, UMNIKOV A A, et al. 40 dB gain all fiber bismuth-doped amplifier operating in the O-band[J]. Opt Lett, 2019, 44(9): 2248-2251.

    [50] [50] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al.Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Opt Lett, 2015, 40(18): 4360-4363.

    [51] [51] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. A 23-dB bismuth-doped optical fiber amplifier for a 1 700 nm band[J]. Sci Rep, 2016, 6(1): 28939.

    [52] [52] LDI A, VMM A, FOMA B, et al. Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms[J]. J Non-Cryst Solids, 2019, s 503-504: 28-35.

    [53] [53] DIANOV E M, YANG L, ISKHAKOVA L D, et al. Use of nanoporous glass for the fabrication of heavily bismuth-doped active optical fibres[J]. Quantum Electron, 2018, 48(7): 658-661.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dongchen, WANG Suyu, SU Weiquan, LIU Yongguang, LIU Zichang, WANG Zihang, ZHANG Ning, LUO Chengxi, YANG Lvyun. Research Progress on Luminescence Materials Based on Nano-Porous Glass[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1054

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 23, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email: Dongchen ZHANG (z_dc@hust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20211002

    Topics