Journal of Innovative Optical Health Sciences, Volume. 15, Issue 1, 2250004(2022)

Orthogonal Aza-BODIPY–BODIPY dyad as heavy-atom free photosensitizer for photo-initiated antibacterial therapy

[in Chinese]1, [in Chinese]2, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1、*, [in Chinese]3, [in Chinese]1, and [in Chinese]
Author Affiliations
  • 1Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
  • 2Department of Radiology, Binzhou Medical University Hospital, Yantai 264100, P. R. China
  • 3Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
  • show less
    References(56)

    [1] [1] S. Wang, Y. Gao, Q. Jin, J. Ji, "Emerging antibacterial nanomedicine for enhanced antibiotic therapy," Biomater. Sci. 24, 6825–6839 (2020).

    [2] [2] Y. Ren, H. Liu, X. Liu, Y. Zheng, Z. Li, C. Li, K. W. K. Yeung, S. Zhu, Y. Liang, Z. Cui, S. Wu, "Photoresponsive materials for antibacterial applications," Cell Rep. Phys. Sci. 1, 100245 (2020).

    [3] [3] Y. Bi, G. Xia, C. Shi, J. Wan, L. Liu, Y. Chen, Y. Wu, W. Zhang, M. Zhou, H. He, R. Liu, "Therapeutic strategies against bacterial biofilms," Fundam. Res. 1, 193–212 (2021).

    [4] [4] W. Xiu, J. Shan, K. Yang, H. Xiao, L. Yuwen, L. Wang, "Recent development of nanomedicine for the treatment of bacterial biofilm infections," View 2, 20200065 (2020).

    [5] [5] X. Hao, L. Huang, C. Zhao, S. Chen, W. Lin, Y. Lin, L. Zhang, A. A. Sun, C. Miao, X. Lin, M. Chen, S. Weng, "Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection," Mater. Sci. Eng. C 123, 111971 (2021).

    [6] [6] C. Zhao, X. Wang, L. Wu, W. Wu, Y. Zheng, L. Lin, S. Weng, X. Lin, "Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds," Colloid. Surf. B 179, 17–27 (2019).

    [7] [7] D. L. Yang, Y. L. Hu, Z. X. Yin, G. S. Zeng, D. Li, Y. Q. Zhang, Z. H. Xu, X. M. Guan, L. X. Weng, L. H. Wang, "Cis-2-dodecenoic acid mediates its synergistic effect with triazoles by interfering with efflux pumps in fluconazole-resistant candida albicans," Biomed. Environ. Sci. 32, 199–209 (2019).

    [8] [8] H. Xu, D. Zhang, J. Li, "Antibacterial nanoparticles with universal adhesion function based on dopamine and eugenol," J. Bioresources Bioproducts 4, 177–182 (2019).

    [9] [9] Q. Jia, Q. Song, P. Li, W. Huang, "Rejuvenated photodynamic therapy for bacterial infections," Adv. Healthc. Mater. 8, 1900608 (2019).

    [10] [10] D. Yang, X. Lv, L. Xue, N. Yang, Y. Hu, L. Weng, N. Fu, L. Wang, X. Dong, "A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azoleresistant Candida albicans infections," Chem. Commun. 55, 15145–15148 (2019).

    [11] [11] Q. Yu, X. Huang, T. Zhang, W. Wang, D. Yang, J. Shao, X. Dong, "Near-infrared aza-bodipy dyes through molecular surgery for enhanced photothermal and photodynamic antibacterial therapy," Chem. Res. Chin. U. 37, 951–959 (2021).

    [12] [12] L. Xue, Q. Shen, T. Zhang, Y. Fan, X. Xu, J. Shao, D. Yang,W. Zhao, X.-C. Dong, X. Mou, "Fluorescence resonance energy transfer enhanced photothermal and photodynamic antibacterial therapy post a single injection," Mater. Chem. Front. 5, 6061–6070 (2021).

    [13] [13] X. Lv, J. Zhang, D. Yang, J. Shao, W. Wang, Q. Zhang, X.-C. Dong, "Recent advances in pH-responsive nanomaterials for anti-infective therapy," J. Mater. Chem. B 8, 10700–10711 (2020).

    [14] [14] W. Xiu, S. Gan, Q. Wen, S. Dai, H. Dong, Q. Li, L. Yuwen, L. Weng, Z. Teng, Y. Mou, L. Wang, "Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-reliefenhanced photodynamic therapy of bacterial infections," Research 2020, 9426453 (2020).

    [15] [15] W. Ma, X. Chen, L. Fu, J. Zhu, M. Fan, J. Chen, C. Yang, G. Yang, L. Wu, G. Mao, X. Yang, X. Mou, Z. Gu, X. Cai, "Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms," ACS Appl. Mater. Interfaces. 12, 22479–22491 (2020).

    [16] [16] A. Bekmukhametova, H. Ruprai, J. M. Hook, D. Mawad, J. Houang, A. Lauto, "Photodynamic therapy with nanoparticles to combat microbial infection and resistance," Nanoscale 12, 21034–21059 (2020).

    [17] [17] M. Wainwright, "Photoantimicrobials and PACT: What's in an abbreviation?," Photochem. Photobiol. Sci. 18, 12–14 (2019).

    [18] [18] D. Chen, Z. Zhong, Q. Ma, J. Shao, W. Huang, X. Dong, "Aza-BODIPY-based nanomedicines in cancer phototheranostics," ACS Appl Mater Interf. 12, 26914–26925 (2020).

    [19] [19] W. Xiao, P. Wang, C. Ou, X. Huang, Y. Tang, M. Wu, W. Si, J. Shao, W. Huang, X. Dong, "2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy," Biomaterials 183, 1–9 (2018).

    [20] [20] H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, "Organic molecule-based photothermal agents: An expanding photothermal therapy universe," Chem. Soc. Rev. 47, 2280–2297 (2018).

    [21] [21] L. Yuwen, Q. Qiu, W.-J. Xiu, K. Yang, Y. Li, H. Xiao, W. J. Yang, D. Yang, L.-H. Wang, "Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections," Biomater. Sci. 9, 4484–4495 (2021).

    [22] [22] Z. Yu, J. Zhou, X. Ji, G. Lin, S. Xu, X. Dong, W. Zhao, "Discovery of a monoiodo aza-bodipy nearinfrared photosensitizer: In vitro and in vivo evaluation for photodynamic therapy," J. Med. Chem. 63, 9950–9964 (2020).

    [23] [23] N. Yang, C. Cao, H. Li, Y. Hong, Y. Cai, X. Song, W. Wang, X. Mou, X. Dong, "Polymer-based therapeutic nanoagents for photothermal-enhanced combination cancer therapy," Small Struct. (2021), doi: 10.1002/sstr.202100110.

    [24] [24] Y. Tang, L. Xue, Q. Yu, D. Chen, Z. Cheng, W. Wang, J. Shao, X. Dong, "Smart aza-bodipy photosensitizer for tumor microenvironmentenhanced cancer phototherapy," ACS Appl. Bio Mater. 2, 5888–5897 (2019).

    [25] [25] D. Chen, Q. Yu, X. Huang, H. Dai, T. Luo, J. Shao, P. Chen, J. Chen, W. Huang, X. Dong, "A highlyeffi cient type I photosensitizer with robust vasculardisruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy," Small 16, 2001059 (2020).

    [26] [26] Y. Xu, M. Zhao, Y. Zhou, J. Wang, M. Li, F. Li, W. Lv, S. Liu, Q. Zhao, "Rational design of nearinfrared aza-platinum-dipyrromethene-based nanophototherapy agent with multistage enhancement for synergistic antitumor therapeutics," Small Struct. 2100094 (2021).

    [27] [27] D. O. Frimannsson, M. Grossi, J.Murtagh, F. Paradisi, D. F. O'Shea, "Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer," J. Med. Chem. 53, 7337–7343 (2010).

    [28] [28] J. Deckers, T. Cardeynaels, H. Penxten, A. Ethirajan, M. Ameloot, M. Kruk, B. Champagne, W. Maes, "Near-infrared BODIPY-acridine dyads acting as heavy-atom-free dual-functioning photosensitizers," Chem-Eur. J. 26, 15212–15225 (2020).

    [29] [29] M. R. Momeni, A. Brown, "A local cc2 and tda-dft double hybrid study on bodipy/aza-bodipy dimers as heavy atom free triplet photosensitizers for photodynamic therapy applications," J. Phys. Chem. A 120, 2550–2560 (2016).

    [30] [30] J. Zou, Z. Yin, K. Ding, Q. Tang, J. Li, W. Si, J. Shao, Q. Zhang, W. Huang, X. Dong, "BODIPY derivatives for photodynamic therapy: Influence of configuration versus heavy atom effect," ACS Appl. Mater. Interf. 9, 32475–32481 (2017).

    [31] [31] N. Epelde-Elezcano, E. Palao, H. Manzano, A. Prieto-Castaneda, A. R. Agarrabeitia, A. Tabero, A. Villanueva, S. delaMoya, I. López-Arbeloa, V. Martínez-Martínez, M. J. Ortiz, "Rational design of advanced photosensitizers based on orthogonal BODIPY dimers to finely modulate singlet oxygen generation," Chem-Eur. J. 23, 4837–4848 (2017).

    [32] [32] C. Wang, Y. Qian, "A water soluble carbazolyl-BODIPY photosensitizer with an orthogonal D–A structure for photodynamic therapy in living cells and zebrafish," Biomater. Sci. 8, 830–836 (2020).

    [33] [33] V.-N. Nguyen, Y. Yan, J. Zhao, J. Yoon, "Heavyatom- free photosensitizers: From molecular design to applications in the photodynamic therapy of cancer," Acc. Chem. Res. 54, 207–220 (2021).

    [34] [34] X. Zhao, Q. Yao, S. Long, W. Chi, Y. Yang, D. Tan, X. Liu, H. Huang, W. Sun, J. Du, J. Fan, X. Peng, "An approach to developing cyanines with simultaneous intersystem crossing enhancement and excited-state lifetime elongation for photodynamic antitumor metastasis," J. Am. Chem. Soc. 143,12345–12354, doi: 10.1021/jacs.1021c06275 (2021).

    [35] [35] Z. Wang, Q. Ma, X. Huang, T. Zhang, J. Shao, X. Zhang, Q. Shen, X. Wang, J. Shao, "S/Se-embedded acenaphthylene-imide-containing polycyclic heteroaromatic hydrocarbon," Chin. Chem. Lett. (2021), doi: 10.1016/j.cclet.2021.1006.1072.

    [36] [36] D. Yang, Y. Tu, X. Wang, C. Cao, Y. Hu, J. Shao, L. Weng, X. Mou, X.-C. Dong, "A photo-triggered antifungal nanoplatform with efflux pump and heat shock protein reversal activity for enhanced chemophotothermal synergistic therapy," Biomater. Sci. 9, 3293–3299 (2021).

    [37] [37] D. Yang, S. Zhang, Y. Hu, J. Chen, B. Bao, L. Yuwen, L. Weng, Y. Cheng, L.-H. Wang, "AIEactive conjugated polymer nanoparticles with redemission for in vitro and in vivo imaging," RSC Adv. 6, 114580–114586 (2016).

    [38] [38] D. Yang, F. Li, Z. Luo, B. Bao, Y. Hu, L. Weng, Y. Cheng, L. Wang, "Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular Fe3t sensing," J. Polym. Sci. Pol Chem. 54, 1686–1693 (2016).

    [39] [39] H. Huang, L. Mao, Z. Li, Y. Liu, S. Fan, Y. Jin, J. Xie, "Multifunctional polypyrrole-silver coated layered double hydroxides embedded into a biodegradable polymer matrix for enhanced antibacterial and gas barrier properties," J. Bioresources Bioproducts 4, 231–241 (2019).

    [40] [40] B. Ashok, N. Hariram, S. Siengchin, A. V. Rajulu, "Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method," J. Bioresources Bioproducts 5, 180–185 (2020).

    [41] [41] X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang, J. Shao, W. Wang, X. Dong, "Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor," Chem. Eng. J. 425, 131523 (2021).

    [42] [42] Z. Luo, D. Yang, C. Yang, X. Wu, Y. Hu, Y. Zhang, L. Yuwen, E. K. L. Yeow, L. Weng, W. Huang, L. Wang, "Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacteria," Appl. Surf. Sci. 434, 155–162 (2017).

    [43] [43] Y. Liang, W. Gao, X. Peng, X. Deng, C. Sun, H. Wu, B. He, "Near infrared light responsive hybrid nanoparticles for synergistic therapy," Biomaterials 100, 76–90 (2016).

    [44] [44] L. Sun, J. Wang, J. Liu, L. Li, Z. P. Xu, "Creating structural defects of drug-free copper-containing layered double hydroxide nanoparticles to synergize photothermal/photodynamic/chemodynamic cancer therapy," Small Struct. 2, 2000112 (2021).

    [45] [45] D. Chen, J. Zhang, Y. Tang, X. Huang, J. Shao, W. Si, J. Ji, Q. Zhang, W. Huang, X. Dong, "A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy," J. Mater. Chem. B 6, 4522–4530 (2018).

    [46] [46] X. Zhou, Q. Wu, Y. Yu, C. Yu, E. Hao, Y. Wei, X. Mu, L. Jiao, "Metal-free direct α-selective arylation of boron dipyrromethenes via base-mediated c–h functionalization," Org. Lett. 18, 736–739 (2016).

    [47] [47] S. Kumar, H. B. Gobeze, T. Chatterjee, F. D'Souza, M. Ravikanth, "Directly connected azabodipy–bodipy dyad: synthesis, crystal structure, and ground-and excited-state interactions," J. Phys. Chem. A 119, 8338–8348 (2015).

    [48] [48] S. Wang, Y. Du, J. Zhang, G. Chen, "Rod-like BODIPY nanomaterials with enhanced photodynamic activity," New J. Chem. 44, 11324–11329 (2020).

    [49] [49] N. Li, Z. Duan, L. Wang, C. Guo, H. Zhang, Z. Gu, Q. Gong, K. Luo, "An amphiphilic pegylated peptide dendron-gemcitabine prodrug-based nanoagent for cancer therapy," Macromol. Rapid Commun. 2100111 (2021).

    [50] [50] Z. Cheng, T. Zhang,W. Wang, Q. Shen, Y. Hong, J. Shao, X. Xie, Z. Fei, X. Dong, "D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy," Chin. Chem. Lett. 32, 1580–1585 (2021).

    [51] [51] J. Zhang, H. Huang, L. Xue, L. Zhong, W. Ge, X. Song, Y. Zhao, W. Wang, X. Dong, "On-demand drug release nanoplatform based on fluorinated aza-BODIPY for imaging-guided chemo-phototherapy," Biomaterials 256, 120211 (2020).

    [52] [52] N. Yang, H. Guo, C. Cao, X. Wang, X. Song, W. Wang, D. Yang, L. Xi, X. Mou, X. Dong, "Infection microenvironment-activated nanoparticles for nir-ii photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy," Biomaterials 275, 120918 (2021).

    [53] [53] Y. Shi, J. Yin, Q. Peng, X. Lv, Q. Li, D. Yang, X. Song, W. Wang, X.-C. Dong, "An acidity-responsive polyoxometalate with inflammatory retention for NIR-II photothermal-enhanced chemodynamic antibacterial therapy," Biomater. Sci., 8, 6093–6099 (2020).

    [54] [54] C. Cao, N. Yang, Y. Zhao, D. Yang, Y. Hu, D. Yang, X. Song, W. Wang, X. Dong, "Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy," Nano Today 39, 101165 (2021).

    [55] [55] J. Zhu, J. Tian, C. Yang, J. Chen, L. Wu, M. Fan, X. Cai, "L-arg-rich amphiphilic dendritic peptide as a versatile no donor for NO/photodynamic synergistic treatment of bacterial infections and promoting wound healing," Small 2101495 (2021).

    [56] [56] D. Yang, F. Chen, S. He, H. Shen, Y. Hu, N. Feng, S. Wang, L. Weng, Z. Luo, L. Wang, "One-pot growth of triangular SnS nanopyramids for photoacoustic imaging and photothermal ablation of tumors," New J. Chem. 43, 13256–13262 (2019).

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Orthogonal Aza-BODIPY–BODIPY dyad as heavy-atom free photosensitizer for photo-initiated antibacterial therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2250004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 24, 2021

    Accepted: Sep. 28, 2021

    Published Online: Mar. 1, 2022

    The Author Email: (iamjjshao@njtech.edu.cn)

    DOI:10.1142/s1793545822500043

    Topics