Journal of the Chinese Ceramic Society, Volume. 53, Issue 2, 280(2025)

Direct Methanol Operation on BaO Modified Anode in Flat-tube Solid Oxide Fuel Cells

QIN Ling1...2, LI Shuaifan2, REN Qihang1,2, YANG Huiwen2, YANG Jun2,3,*, SANG Junkang2 and GUAN Wanbing2 |Show fewer author(s)
Author Affiliations
  • 1Nano Science and Technology Institute, University of Science & Technology of China, Suzhou 215123, Jiangsu, China
  • 2Zhejiang Key Laboratory of Advanced Fuel Cell and Electrolytic Cell Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
  • 3Zhejiang H2-Bank Co. LTD, Ningbo 315899, Zhejiang, China
  • show less
    References(37)

    [1] [1] YUSOFF W N A W, BAHARUDDIN N A, SOMALU M R, et al. Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells[J]. Int J Miner Metall Mater, 2023, 30(10): 1933–1956.

    [2] [2] KOTHANDARAMAN J, KAR S, GOEPPERT A, et al. Advances in homogeneous catalysis for low temperature methanol reforming in the context of the methanol economy[J]. Top Catal, 2018, 61(7): 542–559.

    [3] [3] CHEN L N, HOU K P, LIU Y S, et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst[J]. J Am Chem Soc, 2019, 141(45): 17995–17999.

    [4] [4] LI X F, MA X F, ZHANG J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metall Sin Engl Lett, 2020, 33(6): 759–773.

    [5] [5] BILL A, ELIASSON B, KOGELSCHATZ U, et al. Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1998: 541–544.

    [6] [6] BLUMBERG T, TSATSARONIS G, MOROSUK T. On the economics of methanol production from natural gas[J]. Fuel, 2019, 256: 115824.

    [7] [7] BOZZANO G, MANENTI F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies[J]. Prog Energy Combust Sci, 2016, 56: 71–105.

    [8] [8] LI H J, TIAN Y, WANG Z M, et al. An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode[J]. RSC Adv, 2012, 2(9): 3857–3863.

    [9] [9] XU K, ZHANG H, DENG W Q, et al. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels[J]. Sci Bull, 2023, 68(21): 2574–2582.

    [10] [10] WANG R Z, WANG T P, MA Y Y, et al. Control of carbon deposition over methane-fueled SOFCs through tuning the O/C ratio at the anode/electrolyte interface[J]. J Power Sources, 2022, 544: 231854.

    [11] [11] CIMENTI M, BUCCHERI M A, HILL J M. Direct utilization of methanol and ethanol on La0.75Sr0.25Cr0.5Mn0.5O3− anodes for solid oxide fuel cells[J]. Electrocatalysis, 2012, 3(1): 59–67.

    [12] [12] CHIU Y J, CHIU H C, HSIEH R H, et al. Simulations of hydrogen production by methanol steam reforming[J]. Energy Procedia, 2019, 156: 38–42.

    [13] [13] XU Q D, GUO Z J, XIA L C, et al. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels[J]. Energy Convers Manag, 2022, 253: 115175.

    [14] [14] CIMENTI M, HILL J M. Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions[J]. J Power Sources, 2009, 186(2): 377–384.

    [15] [15] LIU W, SANG J K, WANG Y D, et al. Durability of direct-internally reformed simulated coke oven gas in an anode-supported planar solid oxide fuel cell based on double-sided cathodes[J]. J Power Sources, 2020, 465: 228284.

    [16] [16] LEONE P, LANZINI A, ORTIGOZA-VILLALBA G A, et al. Operation of a solid oxide fuel cell under direct internal reforming of liquid fuels[J]. Chem Eng J, 2012, 191: 349–355.

    [17] [17] CHEN J Y, OUYANG M Z, BOLDRIN P, et al. Understanding the coarsening and degradation in a nanoscale nickel gadolinia-doped-ceria electrode for high-temperature applications[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47564–47573.

    [18] [18] LV X J, DING X Y, WENG Y W. Effect of fuel composition fluctuation on the safety performance of an IT-SOFC/GT hybrid system[J]. Energy, 2019, 174: 45–53.

    [19] [19] Gan T, Song H, Fan X, et al. A rational design of highly active and coke-resistant anode for methanol-fueled solid oxide fuel cells with Sn doped Ni-Ce0.8Sm0.2O2−[J]. Chem Eng J, 2023, 455: 140692.

    [20] [20] HU B X, KEANE M, PATIL K, et al. Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells[J]. Appl Energy, 2014, 134: 342–348.

    [21] [21] WANG T P, WANG R Z, XIE X Y, et al. Robust direct hydrocarbon solid oxide fuel cells with exsolved anode nanocatalysts[J]. ACS Appl Mater Interfaces, 2022, 14(51): 56735–56742.

    [24] [24] YANG Q, CHAI F T, MA C, et al. Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells[J]. J Mater Chem A, 2016, 4(46): 18031–18036.

    [25] [25] TAKEGUCHI T, KANI Y, YANO T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. J Power Sources, 2002, 112(2): 588–595.

    [26] [26] LI X X, LIU M F, LAI S Y, et al. In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells[J]. Chem Mater, 2015, 27(3): 822–828.

    [27] [27] LIU W, ZOU Z W, MIAO F X, et al. Anode-supported planar solid oxide fuel cells based on double-sided cathodes[J]. Energy Technol, 2019, 7(2): 240–244.

    [30] [30] KOMATSU Y, SCIAZKO A, SUZUKI Y, et al. Operando observation of patterned nickel-gadolinium doped ceria solid oxide fuel cell anode[J]. J Power Sources, 2021, 516: 230670.

    [31] [31] OVTAR S, TONG X F, BENTZEN J J, et al. Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities via decoration with nano-sized electrocatalysts[J]. Nanoscale, 2019, 11(10): 4394–4406.

    [32] [32] ISLAM S, HILL J M. Barium oxide promoted Ni/YSZ solid-oxide fuel cells for direct utilization of methane[J]. J Mater Chem A, 2014, 2(6): 1922–1929.

    [33] [33] LIU M F, CHOI Y, YANG L, et al. Direct octane fuel cells: A promising power for transportation[J]. Nano Energy, 2012, 1(3): 448–455.

    [34] [34] YANG L, XIAO X N, ZHANG D, et al. Analysis of damping conservation in subsynchronous oscillation[C]//2011 IEEE Electrical Power and Energy Conference. Winnipeg, MB. IEEE, 2011: 357–361.

    [35] [35] JIAO Z J, SHIKAZONO N. In operando optical study of active three phase boundary of nickel-yttria stabilized zirconia solid-oxide fuel cell anode under polarization[J]. J Power Sources, 2018, 396: 119–123.

    [36] [36] ARGANDA-CARRERAS I, KAYNIG V, RUEDEN C, et al. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification[J]. Bioinformatics, 2017, 33(15): 2424–2426.

    [37] [37] YANG J, ZOU Z W, ZHANG H, et al. Study on the long-term discharge and redox stability of symmetric flat-tube solid oxide fuel cells[J]. Int J Hydrog Energy, 2021, 46(15): 9741–9748.

    [38] [38] MAHER R C, DUBOVIKS V, OFFER G, et al. In-operando Raman characterization of carbon deposition on SOFC anodes[J]. ECS Trans, 2013, 57(1): 1619–1626.

    [39] [39] YANG G, LI Y Q, SANG J K, et al. In-situ analysis of anode atmosphere in a flat-tube solid oxide fuel cell operated with dry reforming of methane[J]. J Power Sources, 2022, 533: 231246.

    [40] [40] ZEKRI A, HERBRIG K, KNIPPER M, et al. Nickel depletion and agglomeration in SOFC anodes during long-term operation[J]. Fuel Cells, 2017, 17(3): 359–366.

    [41] [41] YUE W X, LI Y F, ZHENG Y, et al. Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering[J]. Nano Energy, 2019, 62: 64–78.

    Tools

    Get Citation

    Copy Citation Text

    QIN Ling, LI Shuaifan, REN Qihang, YANG Huiwen, YANG Jun, SANG Junkang, GUAN Wanbing. Direct Methanol Operation on BaO Modified Anode in Flat-tube Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 280

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 7, 2024

    Accepted: Feb. 20, 2025

    Published Online: Feb. 20, 2025

    The Author Email: Jun YANG (yangjun@nimte.ac.cn)

    DOI:10.14062/j.issn.0454-5648.20240193

    Topics