Acta Photonica Sinica, Volume. 49, Issue 5, 510002(2020)
Remote Sensing Image Scene Classification Based on Deep Multi-branch Feature Fusion Network
[1] [1] CHENG Gong, HAN Jun-wei, LU Xiao-qing. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the the IEEE, 2017, 10(105): 1865-1883.
[2] [2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105.
[3] [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
[4] [4] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[5] [5] HUANG Gao, LIU Zhuang, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[6] [6] YE Liu-hua, WANG Lei, SUN Ya-xin, et al. Parallel multi-stage features fusion of deep convolutional neural networks for aerial scene classification[J]. Remote Sensing Letters, 2018, 9(3): 294-303.
[7] [7] ZHOU Zhao, ZHENG Yin-bin, YE Hao, et al. Satellite image scene classification via ConvNet with context aggregation[C]. Pacific Rim Conference on Multimedia. Springer, Cham, 2018: 329-339.
[8] [8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, (99): 2999-3007.
[9] [9] SWAIN M J, BALLARD D H. Color indexing[J]. International Journal of Computer Vision, 1991, 7(1): 11-32.
[10] [10] BIAN Xiao-yong, CHEN Chen, TIAN Long, et al. Fusing local and global features for high-resolution scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2889-2901.
[11] [11] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[12] [12] CHENG Gong, ZHOU Pei-cheng, HAN Jun-wei, et al. Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images[J]. IET Computer Vision, 2015, 9(5): 639-647.
[13] [13] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. Proceedings of the 18th Sigspatial International Conference on Advances in Geographic Information Systems, 2010: 270-279.
[14] [14] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), IEEE, 2006, 2: 2169-2178.
[15] [15] BOSCH A, ZISSERMAN A, et al. Scene classification via pLSA[C]. European conference on computer vision. Springer, Berlin, Heidelberg, 2006: 517-530.
[17] [17] ZHU Qi-qi, ZHONG Yan-fei, ZHAO Bei, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J ]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 1-5.
[19] [19] ZENG Dan, CHEN Shuai-jun, CHEN Bo-yang, et al. Improving remote sensing scene classification by integrating global-context and local-object features[J]. Remote Sensing, 2018, 10(5): 734.
[20] [20] WANG Qi, LIU Shao-teng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167.
[21] [21] XIA Gui-song, HU Jing-wen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
[23] [23] CHAIB S, LIU Huang, GU Yan-feng, et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4775-4784.
[24] [24] YU Yu-long, LIU Fu-xian. A two-stream deep fusion framework for high-resolution aerial scene classification[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-13.
[25] [25] OTHMAN E, BAZI Y, ALAJLAN N, et al. Using convolutional features and a sparse autoencoder for land-use scene classification[J]. International Journal of Remote Sensing, 2016, 37(10): 2149-2167.
Get Citation
Copy Citation Text
ZHANG Tong, ZHENG En-rang, SHEN Jun-ge, GAO An-tong. Remote Sensing Image Scene Classification Based on Deep Multi-branch Feature Fusion Network[J]. Acta Photonica Sinica, 2020, 49(5): 510002
Received: Jan. 10, 2020
Accepted: --
Published Online: Jun. 4, 2020
The Author Email: En-rang ZHENG (zhenger@sust.edu.cn)