Optics and Precision Engineering, Volume. 31, Issue 2, 168(2023)
Research progress of photon counting optical time domain reflectometry based on single photon detection
[1] [1] 1刘德明, 孙琪真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展, 2009, 46(11): 29-33. doi: 10.3788/lop20094611.0029LIUD M, SUNQ ZH. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 2009, 46(11): 29-33.(in Chinese). doi: 10.3788/lop20094611.0029
[2] [2] 2张旭苹, 陈晓红, 梁蕾, 等. 长距离海缆在线监测改进型C-OTDR系统[J]. 光学学报, 2021, 41(13): 9-20. doi: 10.3788/aos202141.1306001ZHANGX P, CHENX H, LIANGL, et al. Enhanced C-OTDR-based online monitoring scheme for long-distance submarine cables[J]. Acta Optica Sinica, 2021, 41(13): 9-20.(in Chinese). doi: 10.3788/aos202141.1306001
[3] [3] 3李川, 刘江, 庄君刚, 等. 基于背向Brillouin散射监测混凝土应变[J]. 光学 精密工程, 2014, 22(2): 325-330. doi: 10.3788/ope.20142202.0325LICH, LIUJ, ZHUANGJ G, et al. Strain detection of concrete structures based on Brillouin backscattering[J]. Opt. Precision Eng., 2014, 22(2): 325-330.(in Chinese). doi: 10.3788/ope.20142202.0325
[4] [4] 4西涛涛. 分布式光纤温度传感器在油田高温测井中的应用[J]. 石化技术, 2018, 25(8): 16-17. doi: 10.3969/j.issn.1006-0235.2018.08.011XIT T. Application of distributed optical fiber temperature sensor in oilfield high temperature logging[J]. Petrochemical Industry Technology, 2018, 25(8): 16-17.(in Chinese). doi: 10.3969/j.issn.1006-0235.2018.08.011
[5] [5] 5何伟基, 司马博羽, 程耀进, 等. 基于盖格-雪崩光电二极管的光子计数成像[J]. 光学 精密工程, 2012, 20(8): 1831-1837. doi: 10.3788/OPE.20122008.1831HEW J, SIMAB Y, CHENGY J, et al. Photon counting imaging based on GM-APD[J]. Opt. Precision Eng., 2012, 20(8): 1831-1837.(in Chinese). doi: 10.3788/OPE.20122008.1831
[6] [6] 6俞文凯, 姚旭日, 刘雪峰, 等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程, 2012, 20(10): 2283-2292. doi: 10.3788/ope.20122010.2283YUW K, YAOX R, LIUX F, et al. Compressed sensing for ultra-weak light counting imaging[J]. Opt. Precision Eng., 2012, 20(10): 2283-2292.(in Chinese). doi: 10.3788/ope.20122010.2283
[7] B LIU, Z H YU, C HILL et al. Sapphire-fiber-based distributed high-temperature sensing system. Optics Letters, 41, 4405-4408(2016).
[8] K DE SOUZA, T P NEWSON. Brillouin-based fiber-optic distributed temperature sensor with optical preamplification. Optics Letters, 25, 1331-1333(2000).
[9] H GEIGER, J P DAKIN. Low-cost high-resolution time-domain reflectometry for monitoring the range of reflective points. Journal of Lightwave Technology, 13, 1282-1288(1995).
[11] P HEALEY. Optical time domain reflectometry-a performance comparison of the analogue and photon counting techniques. Optical and Quantum Electronics, 16, 267-276(1984).
[12] J H HU, Q Y ZHAO, X P ZHANG et al. Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detector. Journal of Lightwave Technology, 30, 2583-2588(2012).
[13] J ZHANG, M A ITZLER, H ZBINDEN et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications, 4(2015).
[14] A TOSI, N CALANDRI, M SANZARO et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE Journal of Selected Topics in Quantum Electronics, 20, 192-197(2014).
[15] C L WONG, W HASAN, S ISAAK. The design and characterization of breakdown mechanism on p+/n-well single photon Avalanche Diode (Spad). Journal of Advanced Research in Applied Mechanics, 13, 12-23(2015).
[16] F SCHOLDER, J D GAUTIER, M WEGMÜLLER et al. Long-distance OTDR using photon counting and large detection gates at telecom wavelength. Optics Communications, 213, 57-61(2002).
[17] M WEGMULLER, F SCHOLDER, N GISIN. Photon-counting OTDR for local birefringence and fault analysis in the metro environment. Journal of Lightwave Technology, 22, 390-400(2004).
[18] G RIPAMONTI, M GHIONI, A LACAITA. No dead-space optical time-domain reflectometer. Journal of Lightwave Technology, 8, 1278-1283(1990).
[19] G RIPAMONTI, S COVA. Centimeter-resolution optical time domain reflectometry using single-photon avalanche diodes(1986).
[20] C LANGROCK, E DIAMANTI, R V ROUSSEV et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Optics Letters, 30, 1725-1727(2005).
[21] R FECED, M FARHADIROUSHAN, V A HANDEREK et al. Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique. IEE Proceedings-Optoelectronics, 144, 183(1997).
[22] X P ZHANG, Y L SHI, Y Y SHAN et al. Enhanced ν-optical time domain reflectometry using gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector. Optical Engineering, 55(2016).
[23] P HEALEY, P HENSEL. Optical time domain reflectometry by photon counting. Electronics Letters, 16, 631(1980).
[24] P HEALEY. Multichannel photon-counting backscatter measurements on monomode fibre. Electronics Letters, 17, 751(1981).
[25] P ERAERDS, M LEGRÉ, J ZHANG et al. Photon counting OTDR: advantages and limitations. Journal of Lightwave Technology, 28, 952-964(2010).
[26] B F LEVINE, C G BETHEA, J C CAMPBELL. Near room temperature 1.3 μm single photon counting with a InGaAs avalanche photodiode. Electronics Letters, 20, 596(1984).
[27] B F LEVINE, C G BETHEA, L G COHEN et al. Optical time domain reflectometer using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm. Electronics Letters, 21, 83(1985).
[28] B F LEVINE, C G BETHEA, J C CAMPBELL. 1.52 μm room-temperature photon-counting optical time domain reflectometer. Electronics Letters, 21, 194(1985).
[29] R STIERLIN, J RICKA, B ZYSSET et al. Distributed fiber-optic temperature sensor using single photon counting detection. Applied Optics, 26, 1368-1370(1987).
[30] R FECED, M FARHADIROUSHAN, V A HANDEREK et al. A high spatial resolution distributed optical fiber sensor for high-temperature measurements. Review of Scientific Instruments, 68, 3772-3776(1997).
[31] E DIAMANTI, C LANGROCK, M M FEJER et al. 1.5/spl mu/m photon-counting optical time domain reflectometry with a single-photon detector using up-conversion in a PPLN waveguide, 1079-1081(2006).
[32] E DIAMANTI, C LANGROCK, M M FEJER et al. 1.5 microm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide. Optics Letters, 31, 727-729(2006).
[33] M LEGRÉ, R THEW, H ZBINDEN et al. High resolution optical time domain reflectometer based on 1.55mum up-conversion photon-counting module. Optics Express, 15, 8237-8242(2007).
[34] G L SHENTU, Q C SUN, X JIANG et al. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector. Optics Express, 21, 24674-24679(2013).
[35] M G TANNER, S D DYER, B BAEK et al. High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors. Applied Physics Letters, 99, 201110(2011).
[36] S D DYER, M G TANNER, B BAEK et al. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors. Optics Express, 20, 3456-3466(2012).
[37] C SCHUCK, W H P PERNICE, X MA et al. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Applied Physics Letters, 102, 191104(2013).
[38] Q Y ZHAO, L XIA, C WAN et al. Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors. Scientific Reports, 5, 10441(2015).
[39] M HÖBEL, J RICKA, M WÜTHRICH et al. High-resolution distributed temperature sensing with the multiphoton-timing technique. Applied Optics, 34, 2955-2967(1995).
[41] F CALLIARI, M M CORREIA, G P TEMPORÃO et al. Fast acquisition tunable high-resolution photon-counting OTDR. Journal of Lightwave Technology, 38, 4572-4579(2020).
[42] A L LACAITA, P A FRANCESE, S D COVA et al. Single-photon optical-time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity. Optics Letters, 18, 1110-1112(1993).
[43] C ANTONY, J HAYES, P D TOWNSEND. Single-photon detector based long-range fibre-optic distributed temperature sensor(2012).
[44] Y P LIU, L MA, C YANG et al. Raman distributed temperature sensor with high spatial and temperature resolution using optimized graded-index few-mode fiber over 25 km-long distance. Optics Express, 26, 20562(2018).
[45] B LI, Q ZHOU, R M ZHANG et al. Cost-effective high-spatial-resolution photon-counting optical time-domain reflectometry at 850 nm. Applied Optics, 57, 8824-8828(2018).
[46] B LI, G W DENG, R M ZHANG et al. High dynamic range externally time-gated photon counting optical time-domain reflectometry. Journal of Lightwave Technology, 37, 5899-5906(2019).
[47] B LI, R M ZHANG, G W DENG et al. Photon counting OTDR based on infinite backscatter, 3823-3826(2020).
[48] B LI, R M ZHANG, Y WANG et al. Dispersion independent long-haul photon-counting optical time-domain reflectometry. Optics Letters, 45, 2640-2643(2020).
[49] D DEVICHARAN, T ZAHNLEY, S DAHL et al. Low optical power embedded OTDR, 1-3(2015).
[50] L XIA, J H HU, Q Y ZHAO et al. A distributed Brillouin temperature sensor using a single-photon detector. IEEE Sensors Journal, 16, 2180-2185(2016).
[51] H Y XIA, M J SHANGGUAN, G L SHENTU et al. Brillouin optical time-domain reflectometry using up-conversion single-photon detector. Optics Communications, 381, 37-42(2016).
[52] L W SHENG, J S YAN, L G LI et al. Distributed temperature sensing system based on Brillouin scattering effect using a single-photon detector. International Journal of Optics, 2021, 1-9(2021).
[53] R XU, L W SHENG, J S YAN et al. Research on the distributed measurement of temperature based on Brillouin scattering effect using a single-photon detector, 11850, 6-10(2021).
[54] L W SHENG, J S YAN, L HUANG et al. Distributed Brillouin temperature sensing based on single-photon detector in optical fiber, 11907, 121-126(2021).
[55] V VOISIN, C CAUCHETEUR, D KINET et al. Self-referenced photon counting OTDR technique for quasi-distributed fiber Bragg gratings sensors. IEEE Sensors Journal, 12, 118-123(2012).
[56] J BRENDEL. High-resolution photon-counting OTDR for PON testing and monitoring, 1-5(2008).
[57] C SAUNDERS, P J SCULLY. Distributed plastic optical fibre measurement of pH using a photon counting OTDR. Journal of Physics: Conference Series, 15, 61-66(2005).
[58] G C AMARAL, L E Y HERRERA, D VITORETI et al. WDM-PON monitoring with tunable photon counting OTDR. IEEE Photonics Technology Letters, 26, 1279-1282(2014).
[59] L Y HERRERA, G C AMARAL, J P VON DER WEID. Ultra-high-resolution tunable PC-OTDR for PON monitoring in avionics(2015).
[60] G C AMARAL, J D GARCIA, L E Y HERRERA et al. Automatic fault detection in WDM-PON with tunable photon counting OTDR. Journal of Lightwave Technology, 33, 5025-5031(2015).
[61] A V N VAMSI. Fault detection in fiber optic communication cable by coherent anti-stokes Raman scattering using superconducting nanowire single-photon detector. Indian Journal of Science and Technology, 9, 1-6(2016).
[63] B LI, R M ZHANG, Z H OU et al. Photon counting OTDR for aeronautic fibre testing(2020).
[64] C SAUNDERS, P J SCULLY. Sensing applications for POF and hybrid fibres using a photon counting OTDR. Measurement Science and Technology, 18, 615-622(2007).
Get Citation
Copy Citation Text
Xu LIU, Bo LIU, Yunjiang RAO. Research progress of photon counting optical time domain reflectometry based on single photon detection[J]. Optics and Precision Engineering, 2023, 31(2): 168
Category: Modern Applied Optics
Received: Dec. 7, 2021
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: LIU Bo (Bo.Liu@zhejianglab.com), RAO Yunjiang (yjrao@uestc.edu.cn)