Journal of Synthetic Crystals, Volume. 49, Issue 8, 1427(2020)

Structure-Performance Analysis of Tetrahedron-based Chalcogenide Mid-infrared Nonlinear Optical Materials

HOU Fengjuan... MEI Dajiang*, WANG Weikang and WU Yuandong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [2] [2] Boyd G D, Kasper H M, McFee J H, et al. Linear and nonlinear optical properties of some ternary selenides quantum electron[J].Quantum Electron,1972,8: 900-908.

    [3] [3] Chen C T, Wu Y C, Jiang A D, et al. New nonlinear-optical crystal: LiB3O5[J].Journal of the Optical Society of America B,1989,6(4): 616-621.

    [4] [4] Boyd G D, Miller R C, Nassau K, et al. LiNbO3: An efficient phase matchable nonlinear optical material[J].Applied Physics Letters,1965,5(11): 234-236.

    [5] [5] Lu H C, Gautier R, Donakowski M D, et al. Nonlinear active materials: an illustration of controllable phase matchability[J].Journal of the American Chemical Society,2013,135(32): 11942-11992.

    [6] [6] Bai L, Lin Z S, Wang Z Z, et al. Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals[J].Journal of Chemical Physics,2004,120(18): 8772-8778.

    [7] [7] Kildal H, Mikkelsen J C. The nonlinear optical coefficient, phasematching, and optical damage in the chalcopyrite AgGaSe2[J].Optics Communications,1973,9 (3): 315-318.

    [8] [8] Byer R L, Choy M M, Herbst R L, et al. Second harmonic generation and infrared mixing in AgGaSe2[J].Applied Physics Letters,1974,24: 65-68.

    [9] [9] Vodopyanov K L, Ganikhanov F, Maffetone J P, et al. ZnGeP2 optical parametric oscillator with 3.8-12.4mum tunability[J].Optics Letters,2000,25(11): 841-844.

    [11] [11] Jia Y J, Chen Y G, Guo Y, et al. LiMII(IO3)3(MII=Zn and Cd): two promising nonlinear optical crystals derived from a tunable structure model of α-LiIO3[J].Angewandte Chemie International Edition,2019,131(48): 17354-17358.

    [12] [12] Chen M C, Li L H, Chen Y B, et al. In-phase alignments of asymmetric building units in Ln4GaSbS9 (Ln=Pr, Nd, Sm, Gd-Ho) and their strong nonlinear optical responses in middle IR[J]. Journal of the American Chemical Society, 2011, 133, 4617-4624.

    [13] [13] Wu C, Yang G, Humphrey M G, et al. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals[J].Coordination Chemistry Reviews,2018,375(15): 459-488.

    [14] [14] Liang F, Kang L, Lin Z S, et al. Mid-Infrared nonlinear optical materials based on metal chalcogenides: structure-property relationship[J]. Crystal growth & design, 2017, 17, 2254-2289.

    [15] [15] Dong X H, Huang L, Hu C F, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4(KTP)-type structure[J]. Angewandte Chemie International Edition,2019,58(20): 6528-6534.

    [16] [16] Chen X L, Jo H, Ok K M. Lead mixed oxyhalides satisfying all fundamental requirements for high-performance mid-infrared nonlinear optical materials[J].Angewandte Chemie International Edition,2020,59(19): 7514-7520.

    [17] [17] Zhao S G, Gong P F, Luo S Y, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge[J].Angewandte Chemie International Edition,2015,54(14): 4217-4221.

    [18] [18] Yu H W, Zhang W G, Young J S, et al. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4[J].Advanced Materials,2015,27(45): 7380-7385.

    [19] [19] Ran M Y, Ma Z J, Chen H, et al. Partial isovalent anion substitution to access remarkable second-harmonic generation response: a genericand effective strategy for design of IR NLO materials[J].Chemistry of Materials,2020,32(13): 5890-5896.

    [20] [20] Liu X M, Gong P F, Yang Y, et al. Nitrate nonlinear optical crystals: a survey on structure-performance relationships[J].Coordination Chemistry Reviews,2019,400: 213045-213058.

    [21] [21] Wang A J, Yu W, Huang Z P, et al. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance[J].Scientific Reports,2016,6: 23325-23336.

    [22] [22] Lin X S, Zhang G, Ye N.Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics[J].Crystal Growth & Design,2019,9(2): 1186-1189.

    [23] [23] Yao J Y, Mei D J, Bai L, et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J].Inorganic Chemistry,2010,49(29): 9212-9218.

    [24] [24] Badikov V V, Badikov D V, Laptev V B, et al. Crystal growth and characterization of new quaternary chalcogenide nonlinear crystals for the mid-IR: BaGa2GeS6 and BaGa2GeSe6[J].Optical Materials Express,2016,6(9): 2933-2938

    [25] [25] Liu B W, Zeng H Y, Jiang X M, et al. [A3X][Ga3PS8](A=K, Rb; X=Cl, Br): promising IR nonlinear optical materials exhibiting concurrently strong second-harmonic generation and high laser induced damage thresholds[J].Chemical Science,2016,7(9): 6273-6277.

    [26] [26] Liu B W, Jiang X M, Li B X, et al. Li[LiCs2Cl][Ga3S6]: A nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance[J].Angewandte Chemie International Edition,2020,132(12): 4886-4889.

    [27] [27] Kang L, Liang F, Jiang X X, et al. First-principles design and simulations promote the development of nonlinear optical crystals[J].Accounts of Chemical Research,2020,53(1): 209-217.

    [28] [28] Zhou M L, Kang L, Yao J Y, et al. Midinfrared nonlinear optical thiophosphates from LiZnPS4 to AgZnPS4: a combined experimental and theoretical study[J].Inorganic Chemistry,2016,55(8): 3724-3726.

    [30] [30] Lin H, Wei W B, Chen H, et al. Rational design of infrared nonlinear optical chalcogenides by chemical Substitution[J].Coordination Chemistry Reviews,2020,406: 213150-213173.

    [31] [31] Liang F, Kang L, Lin Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfifides with diamond-like structures[J].Coordination Chemistry Reviews,2017,333: 57-70.

    [32] [32] Wang W K, Mei D J, Liang F, et al. Inherent laws between tetrahedral arrangement pattern and optical performance in tetrahedron-based mid-infrared nonlinear optical materials[J].Coordination Chemistry Reviews,2020,421: 213444-213458.

    [33] [33] Chemla D S, Kupecek P J, Robertson D S, et al. Silver thiogallate, a new material with potential for infrared devices [J].Optics Communications, 1971, 3(1): 29-31.

    [34] [34] Boyd G, KasperH, McFee J, et al. Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients[J].IEEE Journal of Quantum Electronics.1971,7(12): 563-573.

    [35] [35] Petrov V, Yelisseyev A, Isaenko L, et al. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2[J].Applied Physics B,2004,78: 543-546.

    [36] [36] Bai L, Lin Z S, Wang Z Z, et al. Mechanism of linear and nonlinear optical effects of chalcopyrites LiGaX2 (X=S, Se, and Te) crystals[J].Journal of Applied Physics,2008,103,083111-083117.

    [37] [37] Isaenko L, Krinitsin P, Vedenyapin V, et al. LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR[J].Crystal Growth & Design,2005,5(4): 1325-1329.

    [38] [38] Mei D J, Gong P F, Lin Z S, et al. Ag3Ga3SiSe8: a new infrared nonlinear optical material with a chalcopyrite structure[J].CrystEng Comm,2014,16: 6836-6840.

    [39] [39] Eisenmann B, Jakowski M, Schafer H. Data on BaAl4S7and BaGa4S7[J].Revue De Chimie Minerale,1983,20(3): 329-337.

    [40] [40] Mei D J, Jiang J Q, Liang F, et al. Design and synthesis of a nonlinear optical material BaAl4S7 with a wide band gap inspired from SrB4O7[J].Journal of Materials Chemistry C,2018,6: 2684-2689.

    [41] [41] Lin H, Chen L, Zhou L J, et al. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AXII4XIII5Se12[J].Journal of the American Chemical Society,2013,135: 12914-12921.

    [42] [42] Wu K, Zhang B B, Yang Z H, et al. New compressed chalcopyrite-like Li2BaMIVQ4(MIV =Ge, Sn; Q=S, Se): promising infrared nonlinear optical materials[J].Journal of the American Chemical Society,2017,139(42): 14885-14888.

    [43] [43] Li G M, Wu K, Liu Q, et al. Na2ZnGe2S6: a new infrared nonlinear optical material with good balance between large second-harmonic generation response and high laser damage threshold[J].Journal of the American Chemical Society,2016,138(23): 7422-7428.

    [44] [44] Yu P, Zhou L J, Chen L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2(A=Cs, Rb, K)[J].Journal of the American Chemical Society,2012,134: 2227-2235.

    [45] [45] Cao W Z, Mei D J, Yang Y, et al. From CuFeS2 to Ba6Cu2FeGe4S16: rational band gap engineering achieves large second-harmonic generation together with high laser damage threshold[J].Chemical Communications,2019, 55: 14510-14513.

    [46] [46] Liu C, Mei D J, Cao W Z, et al. Mn-based tin sulfide Sr3 MnSn2S8 with a wide band gap and strong nonlinear optical response[J].Journal of Materials Chemistry C,2019,7: 1146-1150.

    [47] [47] Zhang Y L, Mei D J, Yang Y, et al. Rational design of a new chalcogenide with good infrared nonlinear optical performance: SrZnSnS4[J].Journal of Materials Chemistry C,2019,7: 8556-8561.

    [48] [48] Guo Y W, Liang F, Yin W L, et al. BaHgGeSe4 and SrHgGeSe4: two new Hg-based infrared nonlinear optical materials[J].Chemistry of Materials,2019,31(8): 3034-3040.

    [49] [49] Liu B W, Hu C L, Zeng H Y, et al. Strong SHG response via high orientation of tetrahedral functional motifs in polyselenide A2Ge4Se10 (A = Rb, Cs)[J].Advanced Optical Materials,2018,6(13): 1800156.

    [50] [50] Liu B W, Jiang X M, Zeng H Y, et al.[ABa2Cl][Ga4S8] (A=Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced NLO functional motif ordering[J].Journal of the American Chemical Society,2020,142(24): 10641-10645.

    [51] [51] Mei D J, Zhang S Y, Liang F, et al. LiGaGe2S6: a chalcogenide with good infrared nonlinear optical performance and low melting point[J].Inorganic Chemistry,2017,56: 13267-13273.

    [52] [52] Yin W L, Abishek K I, Li C, et al. Noncentrosymmetric chalcogenides BaZnSiSe4 and BaZnGeSe4featuring one-dimensional structures[J].Journal of Alloys and Compounds,2017,708(25): 414-421.

    [53] [53] Zhao J, Mei D J, Yang Y, et al. Rb10Zn4Sn4S17: a chalcogenide with large laser damage threshold improved from the Mn-based analogue[J].Inorganic Chemistry,2019,58,15029-15033.

    Tools

    Get Citation

    Copy Citation Text

    HOU Fengjuan, MEI Dajiang, WANG Weikang, WU Yuandong. Structure-Performance Analysis of Tetrahedron-based Chalcogenide Mid-infrared Nonlinear Optical Materials[J]. Journal of Synthetic Crystals, 2020, 49(8): 1427

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Nov. 11, 2020

    The Author Email: Dajiang MEI (meidajiang718@pku.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics