Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3537(2024)
Representative Elementary Size of Mortar’s Mesostructure
[1] [1] DA SILVA B. X-ray Computed Microtomography technique applied for cementitious materials: A review[J]. Micron, 2018, 107: 1–8.
[2] [2] MOHAMMED A, ABDULLAH A. Scanning electron microscopy (SEM): A review//Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX[C]. Bile Govora, Romania, 2018: 7–9.
[3] [3] BOSSA N, CHAURAND P, VICENTE J, et al. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste[J]. Cem Concr Res, 2015, 67: 138–147.
[4] [4] SCRIVENER K L, CRUMBIE A K, LAUGESEN P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J]. Interface Sci, 2004, 12(4): 411–421.
[5] [5] BACHMAT Y, BEAR J. On the concept and size of a representative elementary volume (rev)[M]//BEAR J, CORAPCIOGLU MY. Advances in Transport Phenomena in Porous Media. Dordrecht: Springer, 1987: 3–20.
[6] [6] VANDENBYGAART A J, PROTZ R. The representative elementary area (REA) in studies of quantitative soil micromorphology[J]. Geoderma, 1999, 89(3/4): 333–346.
[7] [7] STROEVEN M, ASKES H, SLUYS L J. Numerical determination of representative volumes for granular materials[J]. Comput Meth Appl Mech Eng, 2004, 193(30–32): 3221–3238.
[8] [8] GITMAN I M, ASKES H, SLUYS L J. Representative volume: Existence and size determination[J]. Eng Fract Mech, 2007, 74(16): 2518–2534.
[9] [9] BENTZ D P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D[J]. Cem Concr Compos, 2006, 28(2): 124–129.
[10] [10] ZHENG S J, LIU T L, JIANG G S, et al. Effects of water-to-cement ratio on pore structure evolution and strength development of cement slurry based on HYMOSTRUC3D and micro-CT[J]. Appl Sci, 2021, 11(7): 3063.
[11] [11] BENTZ D P, GARBOCZI E J, SNYDER K A. A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media[R]. NISTIR 6265, NIST Publications, 1999.
[12] [12] BENTZ D P. Three-dimensional computer simulation of Portland cement hydration and microstructure development[J]. J Am Ceram Soc, 1997, 80(1): 3–21.
[13] [13] ZHANG M, YE G, VAN BREUGEL K. A numerical-statistical approach to determining the representative elementary volume (REV) of cement paste for measuring diffusivity[J]. Mater Constr, 2010, 60(300): 7–20.
[14] [14] GAO Y, JIANG J Y, WU K. Modeling of ionic diffusivity for cement paste with solid mass fractal model and lattice boltzmann method[J]. J Mater Civ Eng, 2017, 29(5): 04016287.
[15] [15] WINSLOW D N, COHEN M D, BENTZ D P, et al. Percolation and pore structure in mortars and concrete[J]. Cem Concr Res, 1994, 24(1): 25–37.
[16] [16] ZOHDI T I, WRIGGERS P. 1 introduction[M]//Introduction to Computational Micromechanics. Berlin/Heidelberg: Springer-Verlag, 2006: 1–6.
[17] [17] PAN Z C, FANG X R, CHEN A R. Effect of aggregate morphology on physical tortuosity of chloride diffusive path at meso-scale of concrete[J]. Constr Build Mater, 2022, 323: 126215.
[18] [18] KARIM M R, KRABBENHOFT K. Extraction of effective cement paste diffusivities from X-ray microtomography scans[J]. Transp Porous Medium, 2010, 84(2): 371–388.
[19] [19] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. 2nd ed. Oxford university press, 2017.
Get Citation
Copy Citation Text
RONG Zhidan, CHEN Hao, GAO Yun, OUYANG Hanliang. Representative Elementary Size of Mortar’s Mesostructure[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3537
Category:
Received: Dec. 20, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: