Acta Optica Sinica, Volume. 43, Issue 24, 2401009(2023)

Fuzzy Comprehensive Evaluation of Historical Lidar Ratio Data

Xianzhe Hu1,2, Dong Liu1,2,3,4、*, Da Xiao1, Kai Zhang1, Lei Bi5, Jingxin Zhang1, Weize Li1, Xiaotao Li1, Jiesong Deng1, Yudi Zhou1,6, Qun Liu1,6, Lan Wu1, Chong Liu1, Xueping Wan7, Wentai Chen7, Xiaolong Chen7, and Jianfeng Zhou7
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 2Donghai Laboratory, Zhoushan 316021, Zhejiang , China
  • 3ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, Zhejiang , China
  • 4Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, Zhejiang , China
  • 5Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 6Ningbo Innovation Center, Zhejiang University, Ningbo 315100, Zhejiang , China
  • 7Wuxi Zhongke Optoelectronic Technology Co., Ltd., Wuxi 214135, Jiangsu , China
  • show less
    References(116)

    [1] Papayannis A, Balis D, Amiridis V et al. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project[J]. Atmospheric Chemistry and Physics, 5, 2065-2079(2005).

    [2] Sun H Y, Wang S L, Hu X B et al. Detection of surface defects and subsurface defects of polished optics with multisensor image fusion[J]. PhotoniX, 3, 1-14(2022).

    [3] Yu H B, Remer L A, Chin M et al. Aerosols from overseas rival domestic emissions over North America[J]. Science, 337, 566-569(2012).

    [4] Wang K Q, Zhang M M, Tang J et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2, 1-11(2021).

    [5] Wang N C, Zhang K, Shen X et al. Dual-field-of-view high-spectral-resolution lidar: simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2110756119(2022).

    [6] Dubovik O, Holben B, Eck T F et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences, 59, 590-608(2002).

    [7] Chen S J, Tong B W, Russell L M et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate[J]. Remote Sensing of Environment, 281, 113224(2022).

    [8] Fiocco G, Smullin L D. Detection of scattering layers in the upper atmosphere (60-140 km) by optical radar[J]. Nature, 199, 1275-1276(1963).

    [9] Li Y Q, Zheng W, Huang F. All-silicon photovoltaic detectors with deep ultraviolet selectivity[J]. PhotoniX, 1, 1-11(2020).

    [10] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 23, 652-653(1984).

    [11] Chen J. Study on inversion method of atmospheric aerosol extinction backscattering ratio[D](2022).

    [12] Ackermann J. The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study[J]. Journal of Atmospheric and Oceanic Technology, 15, 1043-1050(1998).

    [13] Jiang B, Zhu S, Ren L H et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 4, 046003(2022).

    [14] Liu D, Chen S J, Liu Q et al. Spaceborne environmental detection lidar and its key techniques[J]. Acta Optica Sinica, 42, 1701001(2022).

    [15] Jia L M, Zheng W, Huang F. Vacuum-ultraviolet photodetectors[J]. PhotoniX, 1, 1-25(2020).

    [16] Xiang Y. Research on three-dimensional assimilation and comprehensive analysis method of lidar area network data[D](2018).

    [17] del Rocio Camacho-Morales M, Rocco D, Xu L et al. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 3, 036002(2021).

    [18] Dawson K W, Meskhidze N, Josset D et al. Spaceborne observations of the lidar ratio of marine aerosols[J]. Atmospheric Chemistry and Physics, 15, 3241-3255(2015).

    [19] Huang Z T, Chang C Y, Chen K P et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J]. Advanced Photonics, 4, 066004(2022).

    [20] Jiang G. Fuzzy hierarchical comprehensive evaluation method and its application[D](2005).

    [21] Wang D X, Szczepanik D, Stachlewska I S. Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland[J]. Atmospheric Chemistry and Physics, 19, 13097-13128(2019).

    [22] Hamill P, Giordano M, Ward C et al. An AERONET-based aerosol classification using the Mahalanobis distance[J]. Atmospheric Environment, 140, 213-233(2016).

    [23] Omar A H, Winker D M, Vaughan M A et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 26, 1994-2014(2009).

    [24] Levy R C, Remer L A, Mattoo S et al. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research: Atmospheres, 112, D13211(2007).

    [25] Burton S P, Ferrare R A, Hostetler C A et al. Aerosol classification using airborne high spectral resolution lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 5, 73-98(2012).

    [26] Wang Z, Liu C, Hu Q H et al. Quantify the contribution of dust and anthropogenic sources to aerosols in North China by lidar and validated with CALIPSO[J]. Remote Sensing, 13, 1811(2021).

    [27] Han Y, Wu Y H, Wang T J et al. Characterizing a persistent Asian dust transport event: optical properties and impact on air quality through the ground-based and satellite measurements over Nanjing, China[J]. Atmospheric Environment, 115, 304-316(2015).

    [28] Wang Z T, Zhang L, Cao X J et al. Analysis of dust aerosol by using dual-wavelength lidar[J]. Aerosol and Air Quality Research, 12, 608-614(2012).

    [29] Hofer J, Althausen D, Abdullaev S F et al. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies[J]. Atmospheric Chemistry and Physics, 17, 14559-14577(2017).

    [30] Mamouri R E, Ansmann A, Nisantzi A et al. Low Arabian dust extinction-to-backscatter ratio[J]. Geophysical Research Letters, 40, 4762-4766(2013).

    [31] Hofer J, Ansmann A, Althausen D et al. Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm[J]. Atmospheric Chemistry and Physics, 20, 9265-9280(2020).

    [32] Filioglou M, Giannakaki E, Backman J et al. Optical and geometrical aerosol particle properties over the United Arab Emirates[J]. Atmospheric Chemistry and Physics, 20, 8909-8922(2020).

    [33] Nisantzi A, Mamouri R E, Ansmann A et al. Middle East versus Saharan dust extinction-to-backscatter ratios[J]. Atmospheric Chemistry and Physics, 15, 7071-7084(2015).

    [34] Kim M H, Kim S W, Omar A H. Dust lidar ratios retrieved from the CALIOP measurements using the MODIS AOD as a constraint[J]. Remote Sensing, 12, 251(2020).

    [35] Hu Q Y, Wang H F, Goloub P et al. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China[J]. Atmospheric Chemistry and Physics, 20, 13817-13834(2020).

    [36] Soupiona O, Samaras S, Ortiz-Amezcua P et al. Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: study of the mixing processes[J]. Atmospheric Environment, 214, 116824(2019).

    [37] Groß S, Freudenthaler V, Schepanski K et al. Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements[J]. Atmospheric Chemistry and Physics, 15, 11067-11080(2015).

    [38] Liu Z Y, Winker D, Omar A et al. Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 204-213(2011).

    [39] McAuliffe M A P, Ruth A A. Typical tropospheric aerosol backscatter profiles for southern Ireland: the cork Raman lidar[J]. Atmospheric Research, 120/121, 334-342(2013).

    [40] Christine B, Stefanos S, Moritz H. Retrieval of dust microphysical properties[J]. EPJ Web of Conferences, 237, 08019(2020).

    [41] Mona L, Papagiannopoulos N, Basart S et al. EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy[J]. Atmospheric Chemistry and Physics, 14, 8781-8793(2014).

    [42] Soupiona O, Papayannis A, Kokkalis P et al. EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014-2017): properties and impact on radiative forcing[J]. Atmospheric Chemistry and Physics, 20, 15147-15166(2020).

    [43] Córdoba-Jabonero C, Andrey-Andrés J, Gómez L et al. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in situ measurements[J]. Atmospheric Environment, 142, 420-429(2016).

    [44] Veselovskii I, Hu Q Y, Goloub P et al. Variability in lidar-derived particle properties over West Africa due to changes in absorption: towards an understanding[J]. Atmospheric Chemistry and Physics, 20, 6563-6581(2020).

    [45] Wang N C, Shen X, Xiao D et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 261, 107513(2021).

    [46] Xiao D, Wang N C, Chen S J et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar[J]. Science of the Total Environment, 872, 162091(2023).

    [47] Peng L, Yi F, Liu F C et al. Optical properties of aerosol and cloud particles measured by a single-line-extracted pure rotational Raman lidar[J]. Optics Express, 29, 21947-21964(2021).

    [48] Hara Y, Nishizawa T, Sugimoto N et al. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 188, 20-27(2017).

    [49] Tesche M, Ansmann A, Müller D et al. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China[J]. Applied Optics, 46, 6302-6308(2007).

    [50] Chazette P, Marnas F, Totems J. The mobile water vapor aerosol Raman lidar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process[J]. Atmospheric Measurement Techniques, 7, 1629-1647(2014).

    [51] Haarig M, Ansmann A, Engelmann R et al. First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust[J]. Atmospheric Chemistry and Physics, 22, 355-369(2022).

    [52] Kokkalis P, Soupiona O, Papanikolaou C A et al. Radiative effect and mixing processes of a long-lasting dust event over Athens, Greece, during the COVID-19 period[J]. Atmosphere, 12, 318(2021).

    [53] Mamouri R E, Ansmann A, Nisantzi A et al. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region[J]. Atmospheric Chemistry and Physics, 16, 13711-13724(2016).

    [54] Royer P, Chazette P, Lardier M et al. Aerosol content survey by mini N2-Raman lidar: application to local and long-range transport aerosols[J]. Atmospheric Environment, 45, 7487-7495(2011).

    [55] Wang H F, Li Z Q, Goloub P et al. Identification of typical dust sources in Tarim Basin based on multi-wavelength Raman polarization lidar[J]. Atmospheric Environment, 290, 119358(2022).

    [56] Wang S H, Lei H W, Pani S K et al. Determination of lidar ratio for major aerosol types over western North Pacific based on long-term MPLNET data[J]. Remote Sensing, 12, 2769(2020).

    [57] Zhang S, Huang Z W, Li M S et al. Vertical structure of dust aerosols observed by a ground-based Raman lidar with polarization capabilities in the center of the Taklimakan Desert[J]. Remote Sensing, 14, 2461(2022).

    [58] Rittmeister F, Ansmann A, Engelmann R et al. Profiling of Saharan dust from the Caribbean to western Africa-part1: layering structures and optical properties from shipbornepolarization/Raman lidar observations[J]. Atmospheric Chemistry and Physics, 17, 12963-12983(2017).

    [59] Veselovskii I, Goloub P, Podvin T et al. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations[J]. Atmospheric Measurement Techniques, 11, 949-969(2018).

    [60] Mylonaki M, Papayannis A, Anagnou D et al. Optical and microphysical properties of aged biomass burning aerosols and mixtures, based on 9-year multiwavelength Raman lidar observations in Athens, Greece[J]. Remote Sensing, 13, 3877(2021).

    [61] Ancellet G, Pelon J, Totems J et al. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean Basin[J]. Atmospheric Chemistry and Physics, 16, 4725-4742(2016).

    [62] Groß S, Gasteiger J, Freudenthaler V et al. Saharan dust contribution to the Caribbean summertime boundary layer-a lidar study during SALTRACE[J]. Atmospheric Chemistry and Physics, 16, 11535-11546(2016).

    [63] Engelmann R, Haarig M, Baars H et al. Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in polly-XT[J]. EPJ Web of Conferences, 176, 01004(2018).

    [64] Saha S, Sharma S, Kumar K N et al. A case study on the vertical distribution and characteristics of aerosols using ground-based Raman lidar, satellite and model over Western India[J]. International Journal of Remote Sensing, 42, 6417-6432(2021).

    [65] Papayannis A, Nicolae D, Kokkalis P et al. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study[J]. Science of the Total Environment, 500/501, 277-294(2014).

    [66] Wang Z, Liu C, Dong Y S et al. Profiling of dust and urban haze mass concentrations during the 2019 national day parade in Beijing by polarization Raman lidar[J]. Remote Sensing, 13, 3326(2021).

    [67] Groß S, Freudenthaler V, Wiegner M et al. Dual-wavelength linear depolarization ratio of volcanic aerosols: lidar measurements of the Eyjafjallajökull plume over Maisach, Germany[J]. Atmospheric Environment, 48, 85-96(2012).

    [68] Klekociuk A R, Ottaway D J, MacKinnon A D et al. Australian lidar measurements of aerosol layers associated with the 2015 calbuco eruption[J]. Atmosphere, 11, 124(2020).

    [69] Prata A T, Young S A, Siems S T et al. Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements[J]. Atmospheric Chemistry and Physics, 17, 8599-8618(2017).

    [70] Mortier A, Goloub P, Podvin T et al. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption[J]. Atmospheric Chemistry and Physics, 13, 3705-3720(2013).

    [71] Kokkalis P, Papayannis A, Amiridis V et al. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements[J]. Atmospheric Chemistry and Physics, 13, 9303-9320(2013).

    [72] Ansmann A, Tesche M, Groß S et al. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany[J]. Geophysical Research Letters, 37, L13810(2010).

    [73] Pisani G, Boselli A, Coltelli M et al. Lidar depolarization measurement of fresh volcanic ash from Mt. Etna, Italy[J]. Atmospheric Environment, 62, 34-40(2012).

    [74] Lopes F, Silva J, Marrero J et al. Synergetic aerosol layer observation after the 2015 Calbuco volcanic eruption event[J]. Remote Sensing, 11, 195(2019).

    [75] Chouza F, Leblanc T, Barnes J et al. Long-term (1999-2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two co-located lidars and satellite measurements[J]. Atmospheric Chemistry and Physics, 20, 6821-6839(2020).

    [76] Haarig M, Ansmann A, Gasteiger J et al. Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE[J]. Atmospheric Chemistry and Physics, 17, 14199-14217(2017).

    [77] Guerrero-Rascado J L, Andrey J, Sicard M et al. Aerosol closure study by lidar, Sun photometry, and airborne optical counters during DAMOCLES field campaign at El Arenosillo sounding station, Spain[J]. Journal of Geophysical Research: Atmospheres, 116, D02209(2011).

    [78] Wang L L, Stanič S, Eichinger W et al. Investigation of aerosol properties and structures in two representative meteorological situations over the Vipava valley using polarization Raman LiDAR[J]. Atmosphere, 10, 128(2019).

    [79] Floutsi A A, Baars H, Radenz M et al. Advection of biomass burning aerosols towards the southern hemispheric mid-latitude station of Punta Arenas as observed with multiwavelength polarization Raman lidar[J]. Remote Sensing, 13, 138(2021).

    [80] Ohneiser K, Ansmann A, Baars H et al. Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm[J]. Atmospheric Chemistry and Physics, 20, 8003-8015(2020).

    [81] Lopes F J S, Moreira G A, Rodrigues P F et al. Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of São Paulo, Brazil[J]. Proceedings of SPIE, 9246, 92460H(2014).

    [82] Stachlewska I, Samson M, Zawadzka O et al. Modification of local urban aerosol properties by long-range transport of biomass burning aerosol[J]. Remote Sensing, 10, 412(2018).

    [83] Haarig M, Ansmann A, Baars H et al. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke[J]. Atmospheric Chemistry and Physics, 18, 11847-11861(2018).

    [84] Ritter C, Burgos M A, Böckmann C et al. Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015[J]. Tellus B: Chemical and Physical Meteorology, 70, 1539618(2018).

    [85] Ohneiser K, Ansmann A, Chudnovsky A et al. The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019-2020[J]. Atmospheric Chemistry and Physics, 21, 15783-15808(2021).

    [86] Baars H, Radenz M, Floutsi A A et al. Californian wildfire smoke over Europe: a first example of the aerosol observing capabilities of Aeolus compared to ground-based lidar[J]. Geophysical Research Letters, 48, e2020GL092194(2021).

    [87] Hu Q Y, Goloub P, Veselovskii I et al. The characterization of long-range transported North American biomass burning plumes: what can a multi-wavelength Mie-Raman-polarization-fluorescence lidar provide?[J]. Atmospheric Chemistry and Physics, 22, 5399-5414(2022).

    [88] de Arruda Moreira G, da Silva Andrade I, Cacheffo A et al. Influence of a biomass-burning event in PM2.5 concentration and air quality: a case study in the metropolitan area of São Paulo[J]. Sensors, 21, 425(2021).

    [89] Wu Y H, Nehrir A R, Ren X R et al. Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign[J]. Science of the Total Environment, 773, 145030(2021).

    [90] Vaughan G, Draude A P, Ricketts H M A et al. Transport of Canadian forest fire smoke over the UK as observed by lidar[J]. Atmospheric Chemistry and Physics, 18, 11375-11388(2018).

    [91] Haarig M, Baars H, Ansmann A et al. Wildfire smoke in the stratosphere over Europe-first measurements of depolarization and lidar ratios at 355, 532, and 1064 nm[J]. EPJ Web of Conferences, 237, 02036(2020).

    [92] Wang X, Boselli A, He Y et al. Urban aerosol optical properties measurement by elastic counter-look lidar[J]. EPJ Web of Conferences, 119, 23029(2016).

    [93] Radhakrishnan S R, Singh S K, Sharma C et al. Initial assessment of lidar signal and the first result of a Raman lidar installed at a high altitude station in India[J]. Remote Sensing Applications: Society and Environment, 18, 100309(2020).

    [94] Groß S, Esselborn M, Abicht F et al. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX[J]. Atmospheric Chemistry and Physics, 13, 2435-2444(2013).

    [95] Wang W, Gong W, Mao F Y et al. Measurement and study of lidar ratio by using a Raman lidar in central China[J]. International Journal of Environmental Research and Public Health, 13, 508(2016).

    [96] Ansmann A, Wagner F, Althausen D et al. European pollution outbreaks during ACE 2: lofted aerosol plumes observed with Raman lidar at the Portuguese coast[J]. Journal of Geophysical Research: Atmospheres, 106, 20725-20733(2001).

    [97] Hee W S, Lim H S, Jafri M Z M et al. Vertical profiling of aerosol types observed across monsoon seasons with a Raman lidar in Penang Island, Malaysia[J]. Aerosol and Air Quality Research, 16, 2843-2854(2016).

    [98] Chen Z Y, Liu W Q, Heese B et al. Aerosol optical properties observed by combined Raman-elastic backscatter lidar in winter 2009 in Pearl River Delta, South China[J]. Journal of Geophysical Research: Atmospheres, 119, 2496-2510(2014).

    [99] Wang B Y, Liu D, Pan S Q et al. High-spectral-resolution LIDAR based on a few-longitudinal mode laser for aerosol and cloud characteristics detection[J]. Optics Letters, 47, 5028-5031(2022).

    [100] Kok J F, Ridley D A, Zhou Q et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance[J]. Nature Geoscience, 10, 274-278(2017).

    [101] Zhang R Y, Wang G H, Guo S et al. Formation of urban fine particulate matter[J]. Chemical Reviews, 115, 3803-3855(2015).

    [102] Mather T A, Allen A G, Oppenheimer C et al. Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of masaya volcano, Nicaragua: origins and plume processing[J]. Journal of Atmospheric Chemistry, 46, 207-237(2003).

    [103] Raes F, Van Dingenen R, Vignati E et al. Formation and cycling of aerosols in the global troposphere[J]. Atmospheric Environment, 34, 4215-4240(2000).

    [104] Rinaldi M, Decesari S, Finessi E et al. Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies[J]. Advances in Meteorology, 2010, 310682(2010).

    [105] Pisani G, Armenante M, Boselli A et al. Atmospheric aerosol characterization during Saharan dust outbreaks at Naples EARLINET station[J]. Proceedings of SPIE, 6745, 67451R(2007).

    [106] Noh Y M, Kim Y J, Choi B C et al. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea[J]. Atmospheric Research, 86, 76-87(2007).

    [107] Herrera M E, Dubovik O, Torres B et al. Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation[J]. Atmospheric Measurement Techniques, 15, 6075-6126(2022).

    [108] Kim M H, Omar A H, Tackett J L et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric Measurement Techniques, 11, 6107-6135(2018).

    [109] Ansmann A, Wandinger U, Riebesell M et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 31, 7113-7131(1992).

    [110] de Tomasi F, Perrone M R. Lidar measurements of African dust outbreaks[J]. Proceedings of SPIE, 4882, 400-407(2003).

    [111] Cordoba-Jabonero C, Sabbah I, Sorribas M et al. Saharan and arabian dust aerosols: a comparative case study of lidar ratio[C], 119(2016).

    [112] Cordoba-Jabonero C, Adame J A, Campbell J R et al. Lidar ratio derived for pure dust aerosols: multi-year micro pulse lidar observations in a saharan dust-influenced region[J]. EPJ Web of Conferences, 119, 23017(2016).

    [113] Mona L, Amodeo A, D'Amico G et al. Five years of lidar ratio measurements over Potenza, Italy[J]. Proceedings of SPIE, 6367, 636702(2006).

    [114] Liu D, Yang Y Y, Zhang Y P et al. Pattern recognition model for aerosol classification with atmospheric backscatter lidars: principles and simulations[J]. Journal of Applied Remote Sensing, 9, 096006(2015).

    [115] Zhou M, Chang J H, Chen S C et al. Aerosol type recognition model based on naive Bayesian classifier[J]. Acta Optica Sinica, 42, 1801006(2022).

    [116] Ke J, Sun Y S, Dong C Z et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 3, 1-20(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xianzhe Hu, Dong Liu, Da Xiao, Kai Zhang, Lei Bi, Jingxin Zhang, Weize Li, Xiaotao Li, Jiesong Deng, Yudi Zhou, Qun Liu, Lan Wu, Chong Liu, Xueping Wan, Wentai Chen, Xiaolong Chen, Jianfeng Zhou. Fuzzy Comprehensive Evaluation of Historical Lidar Ratio Data[J]. Acta Optica Sinica, 2023, 43(24): 2401009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jun. 16, 2023

    Accepted: Aug. 11, 2023

    Published Online: Nov. 29, 2023

    The Author Email: Liu Dong (liudongopt@zju.edu.cn)

    DOI:10.3788/AOS231150

    Topics